
Concept Similarity and Related
Categories in SearchSleuth

Frithjof Dau, Jon Ducrou and Peter Eklund

dau@dr-dau.net, jonducrou@gmail.com, peklund@uow.edu.au

School of Information Systems and Technology
University of Wollongong

Northfields Ave, Wollongong, NSW 2522, Australia.

Abstract. SearchSleuth is a program developed to experiment with the
automated local analysis of Web search using formal concept analysis.
SearchSleuth extends a standard search interface to include a conceptual
neighborhood centered on a formal concept derived from the initial query.
This neighborhood of the concept derived from the search terms is deco-
rated with its upper and lower neighbors representing more general and
specialized concepts respectively. In SearchSleuth, the notion of related
categories – which are themselves formal concepts – is also introduced.
This allows the retrieval focus to shift to a new formal concept called
a sibling. This movement across the concept lattice needs to relate one
formal concept to another in a principled way. This paper presents the
issues concerning exploring and ordering the space of related categories.

1 Introduction

There are several Formal Concept Analysis-based Web search applications which
provide automatic local analysis of search results for query refinement and la-
beled clustering [1–3]. These systems work via the creation of a conceptual space
from polled search results which are displayed in various ways. The method is
limited in that the systems fail to create a concept representing the query it-
self within the information space – meaning the space is representative of the
results returned from the query terms, but not to the query terms themselves.
SearchSleuth [4] overcomes this problem by creating a conceptual space as a
neighborhood of the search concept : the formal concept derived from the search
terms. The resulting neighborhood is comprised of generalisations (upper neigh-
bors), specializations (lower neighbors) and related categories (called siblings).
Fig. 1 shows the interface and these components.

By centering the conceptual space around the search concept, the resulting
query refinement operations are more closely coupled to the search terms used
in the creation of the space. SearchSleuth was first presented at the concept
lattice applications conference in October 2007 [4], in that paper we discussed
some of the preliminaries of search in the conceptual neighborhood of a query
and go on to differentiate SearchSleuth work from other FCA-based web search
tool such as CREDO [1] and FooCA[2, 3]. In this paper, we re-iterate some

Fig. 1. SearchSleuth display, including top results, after a search for
‘formal concept analysis’. Generalization/specialization formal concepts
shown above/below the search box resp. The related categories or siblings are
to the right of search box.

of the fundamentals of SearchSleuth, so that the paper is self-contained, how-
ever our contribution is in terms of explorations of the category space: namely
how alternative formal concepts in the neighborhood of the current query con-
cept are derived. Our presentation includes the analysis of lattice-theoretic and
set-theoretic notions of proximity and we conclude that these two ideas are or-
thogonal but complementary. The outcome is of the analysis is reflected in the
design of SearchSleuth.

2 Navigation and Conceptual Neighborhoods

Kim and Compton [5, 6] presented a document navigation paradigm using FCA
and a neighborhood display. Their program, KANavigator uses annotated doc-
uments that can be browsed by keyword and displays the direct neighborhood
(in particular the lower neighbors) as its interface. Kim and Compton’s system
emphasised the use of textual labels as representations of single formal concepts
as opposed to a line diagram of the concept lattice.

ImageSleuth [7] used a similar interface design to allow exploration of image
collections. By showing upper and lower neighbors of the current concept and
allowing navigations to these concepts, users could refine or generalise their posi-
tion in the information space. This is aided by the use of pre-defined conceptual
scales that could be combined to define the attribute set of the lattice which
forms the information space (see Fig. 2 (left)).

ImageSleuth uses most of its interface (shown in Fig. 2) to show thumbnails
of images in the extent of the chosen concept. As a result the user never sees
the line diagram of a concept lattice. Instead, the lattice structure around the
current concept is represented through the list of upper and lower neighbors

that allow the user to move to super- or sub-concepts. For every upper neighbor
(C,D) of the current concept (A,B) the user is offered to remove the set B \D
of attributes from the current intent. Dually, for every lower neighbor (E,F)
the user may include the set F \ B of attributes which takes her to this lower
neighbor. By offering the sets B \ D and F \ B dependencies between these
attributes are shown. Moving to the next concept not having a chosen attribute
in its intent may imply the removal of a whole set of attributes. ImageSleuth
was usability tested and results indicated that the approach aided navigation in
image collections [8, 9].

SearchSleuth follows from ImageSleuth and employs the same conceptual
neighborhood paradigm for display purposes. Unlike ImageSleuth, SearchSleuth’s
context is not static, so the space is rebuilt with each navigation step. This is be-
cause computing the entire domain, the Internet, as a conceptual neighborhood
would be computationally prohibitive.

3 Design Approach of SearchSleuth: Context Building

For the Web, result sets from search engines usually take the form of the lists
of URLs, each with the document title, a short summary of the document (or
snippet) and various details such as date last accessed. Formal Concept Analysis-
based Web search tools use the text-based components of the result set to create
a formal context of the results. This context is then the basis for the conceptual
space to be navigated. One problem with the transformation from Web search
results to formal context is that ranking information on the result set is lost. All
results are treated equally, this issue is usually addressed by re-introducing the

Fig. 2. ImageSleuth: the interface presents only the extent of the current con-
cept as thumbnails and generalizations/specializations by removal/addition of
attributes to reach the upper and lower neighbors (shown to the top/bottom of
the thumbnails). Pre-defined scales (perspectives) are displayed on the left.

rank ordering from the search engine on any result set that is realized from the
concept lattice.

Another difficulty experienced with Web search using FCA is that ranking
methods use techniques such as link structure, page popularity and analysis of
referring pages. As such, we cannot assume that all results of a multiple term
query will contain all the queried terms used. Even a single query term may
yield a page that does not contain the search term entered. This seems counter
intuitive, but if there are enough Web pages linked to the result page that do
contain the search term, that page’s rank may be inflated enough to feature in
the result set.

SearchSleuth uses the ‘result has term’ representation to build a formal con-
text. The formal context for SearchSleuth is created on demand for each query;
this suits the dynamic nature of the Internet. The formal objects are the in-
dividual results, and the formal attributes are the terms contained in the title
and summary of each result. Terms are extracted from the title and summary
after stemming and stop-word filtering has been performed. Stemming reduces
words to their lexical root (e.g. jump, jumping and jumps are all reduced to
jump). Stop-word filtering removes words without individual semantic value, for
example a, the and another. Removing these words reduces the complexity of
the context without noticeable reduction in semantic quality.

The context is then reduced by removing attributes with low support. Every
attribute that has less than 5% of the objects in the incidence relation is re-
moved. This decreases the computational overhead of involved in computing the
concept lattice. Experience shows that this reduction rarely effects the computed
conceptual neighborhood as the terms removed are scarce within the information

Once the formal context is constructed, the search concept is created. This is
done by taking the provided query terms as attributes and deriving the formal
concept. The upper neighbors of this formal concept are then derived and used
to expand the context. This is done by querying the search engine with the
attributes of each upper neighbor and inserting the results into the context.
Results for these ancillary searches are limited to fewer results.

This process of building the context increases the number of terms in the
information space based on a single level of generalisation. It makes the infor-
mation space larger and richer.

4 Building the Information Space

Once the context is expanded, the search concept is recomputed as it may have
been invalidated by this process. The upper and lower neighbors are computed
next. A concept A is said to be the upper neighbor (or cover) of a iff we have
A > B, and/but there is no concept C with A > C > B. A concept A is said to
be the lower neighbor of (or covered by) a concept B iff we have A < B, and/but
there is no concept C with A < C < B. The DownSet (DS) and UpSet (US)
are defined as follows;

DS(X) := {y | y 6 x for an x ∈ X} US(X) := {y | y > x for an x ∈ X}

Upper and lower neighbors of a concept C are written as UN(C) and LN(C)
respectively. Consider now the set of concepts X, UN(X) is defined as the union
of all upper neighbors of the concepts in X. Dually, consider the set of concepts
X, LN(X) is defined as the union of all lower neighbors of the concepts in X.

UN(X) :=
⋃
{UN(C) | C ∈ X} LN(X) :=

⋃
{LN(C) | C ∈ X}

The next step is to compute the related categories or sibling concepts. Sibling
concepts are then calculated by finding all of the lower neighbors of upper neigh-
bors which are upper neighbors of lower neighbors. Put another way, siblings
constitute formal concepts created by the removal of an attribute (or attributes)
that define an upper neighbor (UN), and the inclusion of an attribute (or at-
tributes) that defines a lower neighbor (LN). Child Siblings (CS) and Parent
siblings (PS) defined as: are defined:

CS(C) := UN(LN(C))\{C} PS(C) := LN(UN(C))\{C}

Exact Siblings (ES or Type I siblings) are those which are both Parent and Child
siblings, Since they represent a stricter version of the notion of siblings they are
referred to as Type I siblings and PS and CS are termed Type II siblings:

ES(C) := [LN(UN(C)) ∩ UN(LN(C))]\{C}

General Siblings (GS – Type III) define an even broader set of sibling concepts
and are defined:

GS(C) := [DS(UN(C)) ∩ US(LN(C))]\({C} ∪ UN(C) ∪ LN(C))

namely, anything strictly between some lower and some upper neighbor.
Child Siblings (CS), Parent Siblings (PS), and Exact Siblings (ES) form

anti-chains, but General Siblings (GS) do not.
An example is shown in Fig. 3; concepts with a grey backing are Exact

Siblings (ES) of the concept marked C.
Using the same labeling scheme as ImageSleuth for upper and lower neighbors

and using the full intent as labels of sibling concepts, a display is rendered for
the user (shown in Fig. 1).

Upper neighbors are shown above this text entry box, displayed as text labels
(shown in Fig. 1). The labels are the attributes which would be removed to
navigate to that upper neighbor. These labels are preceeded by a minus symbol
(-) to reinforce the notion of removal.

Lower neighbors are similarly displayed (also indicated with arrows in Fig. 1),
but placed below the text entry box. These labels are the attributes which would
be added to navigate to that lower neighbor. Like upper neighbor labels, these
labels are preceeded by a symbol to reinforce the labels meaning, namely the
plus symbol (+) and the notion of include.

The display order of the upper and lower neighbors is defined by extent
size, larger extents displayed first (left-most). Extent is representative of the

Fig. 3. Diagram demonstrating the Parent Sibling (PS), Child Siblings (CS),
Exact Sibling (ES) and General Siblings (GS) concepts of the concept labeled
with a C in two lattices.

importance or prominence within the current information space. Extent is also
used to aid in the coloring of the labels background. The higher the extent on
a lower neighbor, the deeper the blue block shade behind that concepts label.
Upper neighbors are displayed with the same principle but with red block shade.

One method for dealing with the return of empty-extents from term-based
searching is to provide users with a list of the terms entered so that they can
incrementally remove terms to unconstrain the search. SearchSleuth explores an
approach based on variations on defined distance [10] and similarity [11] metrics
in the FCA literature in order to find similar relevant concepts.

Exact Siblings (ES) are shown to the right of the text entry box (indicated
with arrows in Fig. 1) and are indicative of related concepts. The complete
intent of these concepts is displayed within square brackets preceded by a tilde
(~[...]). This helps group the concept intents and aids distinguishing between
related concepts. Unlike upper and lower neighbors, Exact Siblings are ordered
by similarity. The similarity metric is based on work by Lengnink [10] and was
initially adapted for ImageSleuth. It uses the size of the common objects and
attributes of the concepts. For two concepts (A,B) and (C,D), we set:

s((A,B), (C,D)) :=
1
2

(
|A ∩ C|
|A ∪ C|

+
|B ∩D|
|B ∪D|

)
. (1)

The similarity metric is used to order the exact sibling concepts, while high-
lighting remains based on extent size. Coloring on sibling labels is based on grey
block shades.

By clicking any of the possible concept labels, the query is set to the intent
of the selected concept and the query process is restarted. This is an important
restructuring step as a change in the query will change the result set, and in
order for the information to be valid it needs to be recomputed.

Looking back to Fig. 1, we see the search concept shown is based on the
query formal concept analysis. It shows a single upper neighbor analysis
which interestingly shows an implication that formal and concept are implied
by analysis. The first of the lower neighbors is the acronym fca. This is fol-
lowed by terms such as lattice, mathematics and theory. These terms are
good examples of specialisation from the concept of Formal Concept Analysis.
This neighborhood is based on 115 formal objects. The initial number of formal
attributes for this example was 623, after reducing the context this was lowered
to 40. This offers a tremendous reduction in context complexity, and therefore
computation time but these numbers also reflect the need to search a subset of
conceptual neighborhood.

A main question in the design of SearchSleuth is whether the definition of
Exact Siblings provides sufficient space for proximity search of neighboring cat-
egories. The remainder of the paper addresses this issue in detail.

5 Distance, Similarity and Siblings

We have two measures to consider the proximity of formal concepts. In addition
to similarity (s) defined in Eqn. (1) we also have for two formal concepts (A,B),
(C,D),

d((A,B), (C,D)) :=
1
2

(
|A\C|+ |C\A|

|G|
+
|B\D|+ |D\B|

|M |

)
where d the distance of the concepts (A,B), (C,D) [10]. To ease comparison
between the two measures, let

s′((A,B), (C,D)) := 1− s((A,B), (C,D))

Let us first note that s′ and d are metrics in the mathematical understanding.
That is, d satisfies for arbitrary concepts x, y, z: d(x, y) > 0 and d(x, y) = 0 ⇔
x = y (non-negativity and identity of indiscernibles), d(x, y) = d(y, x) (symme-
try), and d(x, z) 6 d(x, y)+d(y, z) (triangle inequality). The triangle inequalities
can easily be shown by straight-forward computations, and the remaining prop-
erties are easily to be seen.

Next, note that we have

s′((A,B), (C,D)) =
1
2

(
|A ∪ C| − |A ∩ C|

|A ∪ C|
+
|B ∪D| − |B ∩D|

|B ∪D|

)
(2)

d((A,B), (C,D)) =
1
2

(
|A ∪ C| − |A ∩ C|

|G|
+
|B ∪D| − |B ∩D|

|M |

)
(3)

Comparing Eqns. (2) and (3), we see that they differ in that in (2), we divide
through |A ∪ C| and |B ∪ D|, whereas in (3), we divide through |G| and |M |.
Therefore s′ is a local distance, focusing on the shared attributes and objects
of the two formal concepts being compared, and d is a global distance, using

all the attributes and objects in the context. The choice of measurement to
use therefore depends on the sensitivity of the proximity measure required. The
preferred approach for SearchSleuth is proximity in the conceptual neighborhood
to the current formal concept. Therefore the local measure is considered most
suitable.

One can however easily combine the two measures. Let l ∈ [0, 1], measuring
the desire of a local point of view (l = 0 means the user wants a purely global
point of view, and l = 1 means the user wants a purely local point of view).
Then the corresponding distance (dist) measure is,

dist((A,B), (C,D)) := l · s′((A,B), (C,D)) + (1− l) · d((A,B), (C,D)).

6 Relationship between Metric and Sibling Explored

The basic approach of SearchSleuth is to explore the ‘conceptual neighborhood’
of a given concept. To grasp this ‘conceptual neighborhood’, SearchSleuth takes
advantage of two fundamentally different notions of neighboorhood. On the one
hand, we use the lattice-theoretic notions of siblings, which do do not take the
sizes of the concept-extents or intents into account. On the other hand, we use
the notions of similarity and distance metrics are set-theoretic notions (they
do not take the lattice-order into account). In the next two pararaphs, we first
investigate the different types of siblings, and then the two kinds of similarity
metrics.

The notions of siblings is more fine-grained divided into exact siblings (Type
I), parent- and child siblings (Type II), and general siblings (Type III). Obvi-
ously, this is a hierarchy of types: Each Type I sibling is a Type II sibling, and
each Type II sibling is a Type III sibling. Besides this inclusions, we cannot
provide any general estimations on the number of the different types of siblings.
To be more precise: If nI, nII, nIII ∈ N0 are three numbers with nI 6 nII 6 nIII

and nII 6= 1, then there exists a lattice with an element c which has nI Type
I siblings, nII Type I siblings, and nIII Type I siblings. An example for such a
lattice is given below. In the diagram, for each sibling of c, the most special type
the sibling belongs to is inscribed into its node. That is in the diagram, nI nodes
are labelled with ‘I’, nII − nI nodes are labelled with ‘II’, and nIII − nII − nI

nodes are labelled with ‘III’.

c

III III

II II II

II

I I

For the notions of local (s′) and global (d) distance, a somewhat similar
consideration applies. Due to Eqns. (2) and (3), in each lattice, for any concepts

x, y, we have
s′(x, y) > d(x, y) .

On the other hand, there are examples (one is given in the following subsection)
of lattices where there are two concepts c, n which are arbitrary close with
respect to the local, but arbitrary distant with respect to the global distance.

The question remains whether there are dependencies between the lattice-
theoretic (i.e., siblings) and the set-theoretic (i.e., metrics) notions of conceptual
neighborhood. We will investigate some examples in the following sections. As
these examples will show, the two notions are somewhat orthogonal but comple-
mentary in determining the most appropriate related categories in SearchSleuth.

6.1 Exact Siblings (ES) and Proximity Metrics

We first consider an example where we have an exact sibling n of a concept
c, and we investigate whether we can draw some conclusions about the local
or global distance between c and n. The example we consider is the following
concept-lattice:

g
4

m
1
g
1

m
2
g
2

g
3

m
3

m
4

s n

In this diagram, g1, g2, g3, g4 resp. m1,m2,m3,m4 do not denote objects or
attributes, but the numbers of objects resp. attributes which generate the con-
cept. For example, for c = (G2,M2), we have g2 = |G2| − |G1|. That is, the gi

and mi are the numbers of objects and attributes in the common diagrams of
concept lattices. Two concepts are given names, namely c and n. We have:

s(c, n) =
1
2

(
g1

g1 + g2 + g3
+

m4

m2 + m3 + m4

)
d(c, n) =

1
2

(
g2 + g3

g1 + g2 + g3 + g4
+

m2 + m3

m1 + m2 + m3 + m4

)
For fixed g2, g3, g4,m1,m2,m3 (e.g., g2 = g3 = g4 = m1 = m2 = m3 = 1), we
have

lim
g1→∞
m4→∞

s′(c, n) = 1− 1
2
(1 + 1) = 0 and lim

g1→∞
m4→∞

d(c, n) =
1
2
(0 + 0) = 0

i.e., c and n can be arbitrarily similar with respect to both s′ and d.
On the other hand, for fixed g1, g3,m3,m4, we have

lim
g2→∞
m2→∞

s′(c, n) = 1− 1
2
(0 + 0) = 1 and lim

g2→∞
m2→∞

d(c, n) =
1
2
(1 + 1) = 1

(similar for g2,m3, and g3,m2, and g3,m3). That is, c and n can be arbitrarily
different (again with respect to s and to d).

Now let ε1, ε2 > 0. Let g3, g4,m1,m3 be fixed. By first choosing g2 and
m2 sufficiently large, we can achieve s(x, n) < ε1, and by then choosing g1,m4

sufficiently large (which does not affect s(c, n)), we can achieve d(c, n) < ε2. That
is, we can achieve that in a local understanding (i.e., w.r.t. s′), the concepts c
and n are very similar, whereas in a global understanding ((i.e., w.r.t. d), the
concepts c and n are very distant.

To summarize this example: even for the most special case of being an exact
sibling n of a given concept c, we cannot draw any conclusion about the local or
global distance between c and n.

6.2 The Proximity of Type I Siblings versus Non Siblings

A concept n which is a sibling for a given concept c belongs, from a lattice-
theoretic point of view, to the conceptual neighborhood of c; a concept x which
is not a sibling of c does not belong to the conceptual neighborhood. Is this
property reflected by the distances s′ and d? We consider again an example
where n even is an exact sibling of c.

g
4

m
1
g
1

m
2
g
2

g
3

m
3

m
4

g
5

m
5

s n

x

In terms of similarity we have:

sn := s(c, n) =
1
2

(
g1

g1 + g2 + g3
+

m4 + m5

m2 + m3 + m4 + m5

)
sx := s(c, x) =

1
2

(
g1 + g2

g1 + g2 + g4 + g5
+

m5

m2 + m4 + m5

)
Note that we can have g1 = 0, m1 = 0, g4 = 0, and m5 = 0, but all other
numbers must be > 1. Now, n could be more similar to c than x, equally similar,
or less similar, as the following examples show.

g1 g2 g3 g4 g5 m1 m2 m3 m4 m5 2 · sn = 2 · s(c, n) 2 · sx = 2 · s(c, x)
1 1 1 0 1 1 1 1 1 1 1/3 + 2/4 = 5/6 2/3 + 1/3 = 1
1 1 1 1 1 0 1 1 1 1 1/3 + 2/4 = 5/6 2/4 + 1/3 = 5/6
1 1 1 1 1 0 1 1 1 0 1/3 + 1/3 = 2/3 2/4 + 0/2 = 1/2

Running a computer-program checking all values for gi and mi with a thresh-
old of 8 yields:

s(c, n) > s(c, x) s(c, n) < s(c, x) s(c, n) = s(c, x)
804.068.208 913.112.127 2.746.449

Therefore the cases in which s(c, n) > s(c, x) and s(c, n) < s(c, x) do not
significantly differ and we cannot conclude (at least for this toy-example) that
siblings are generally more similar than non-siblings.

Similarly, repeating the analysis in terms of the distance metric d, we have:

dn := s(c, n) =
1
2

(
g2 + g3

g1 + · · ·+ g5
+

m3 + m4

m1 + · · ·+ m5

)
dx := s(c, x) ==

1
2

(
g4 + g5

g1 + · · ·+ g5
+

m2 + m4

m1 + · · ·+ m5

)

g1g2g3g4g5 m1m2m3m4m5 2 · dn = 2 · d(c, n) 2 · dx = 2 · d(c, x) result
0 1 1 0 2 0 1 1 2 0 2/4 + 2/4 = 1 2/4 + 3/4 = 5/4 d1 < d2

0 1 1 1 1 0 1 1 1 0 2/4 + 2/3 = 7/6 2/4 + 2/3 = 7/6 d1 = d2

0 1 1 0 1 0 1 1 1 0 2/3 + 2/3 = 4/3 1/3 + 2/3 = 1 d1 > d2

d(c, n) > d(c, x) d(c, n) < d(c, x) d(c, n) = d(c, x)
908.328.121 788.136.280 23.462.383

Again the cases d(c, n) > d(c, x) and d(c, n) < d(c, x) do not significantly differ.
To summarize this example: even for the most special case of being an exact

sibling n of a given concept c, we cannot draw any conclusion that n is closer to
c compared to a non-sibling.

6.3 The Proximity of Type II versus Type III Siblings

We have different strengths of being a sibling. We still could hope that this is
reflected by the metrics. In the following example, we consider Type II siblings
of a concept c with the more general Type III siblings and check whether the
Type II siblings are closer to c than the Type III siblings.

m
1

g
4

m
4

g
5

m
5

m
3

m
6
g
6

m
2

n

n

n

g
1

s

g
3

1

g
2 2

3

In terms of similarity we have:

s1 := s(c, n1) =
1
2

(
g1

g1 + g2 + g3
+

m6

m2 + m3 + m4 + m5 + m6

)
s2 := s(c, n2) =

1
2

(
g1

g1 + g2 + g3 + g4
+

m6

m2 + m4 + m5 + m6

)
s3 := s(c, n3) =

1
2

(
g1

g1 + g2 + g3 + g4 + g5
+

m6

m2 + m5 + m6

)
In this example, there is no order relationship between s1, s2, and s3. We can
have s1 < s2 < s3 or s3 < s1 < s2 or s1 = s2 < s3 etc. Any combination is
possible. The following table shows examples for all possible strict orders of s1,
s2, s3 (examples for cases like s1 = s2 < s3 are left out due to space limitations).

g1g2g3g4g5g6 m1m2m3m4m5m6 2 · s1 2 · s2 2 · s3 result
1 1 1 1 1 1 1 1 2 1 1 2 1/3 + 2/7 1/4 + 2/5 1/5 + 2/4 s1 < s2 < s3

1 1 2 1 2 1 1 2 2 1 2 2 1/4 + 2/9 1/5 + 2/7 1/7 + 2/6 s1 < s3 < s2

1 1 1 1 1 1 1 1 1 1 1 2 1/3 + 2/6 1/4 + 2/5 1/5 + 2/4 s2 < s1 < s3

1 1 1 1 1 1 1 1 1 1 2 2 1/3 + 2/7 1/4 + 2/6 1/5 + 2/5 s2 < s3 < s1

2 2 2 1 2 1 1 1 2 1 2 1 2/6 + 1/7 2/7 + 1/5 2/9 + 1/4 s3 < s1 < s2

1 1 1 1 1 1 1 2 1 1 2 1 1/3 + 1/7 1/4 + 1/6 1/5 + 1/5 s3 < s2 < s1

Similarly, repeating the analysis in terms of the distance metric, we have:

d1 := d(c, n2) =
1
2

(
g2 + g3

g1 + · · ·+ g6
+

m2 + m3 + m4 + m5

m1 + · · ·+ m6

)
d2 := d(c, n2) =

1
2

(
g2 + g3 + g4

g1 + · · ·+ g6
+

m2 + m4 + m5

m1 + · · ·+ m6

)
d3 := d(c, n3) =

1
2

(
g2 + g3 + g4 + g5

g1 + · · ·+ g6
+

m2 + m5

m1 + · · ·+ m6

)
Again here is no relationship between d1, d2, and d3, and any combination

is possible, as the following table shows:

g1g2g3g4g5g6 m1m2m3m4m5m6 2 · d1 2 · d2 2 · d3 result
1 1 1 1 1 1 1 1 1 1 2 1 2/6 + 5/7 3/6 + 4/7 4/6 + 3/7 d1 <d2 <d3

1 1 1 1 1 1 1 2 1 2 2 2 2/6 + 7/10 3/6 + 6/10 4/6 + 4/10 d1 <d3 <d2

1 1 1 1 1 1 1 2 2 1 2 2 2/6 + 7/10 3/6 + 5/10 4/6 + 4/10 d2 <d1 <d3

1 1 1 1 1 1 1 1 2 1 1 1 2/6 + 5/7 3/6 + 3/7 4/6 + 2/7 d2 <d3 <d1

1 1 1 1 1 1 1 1 1 2 1 1 2/6 + 5/7 3/6 + 4/7 4/6 + 2/7 d3 <d1 <d2

1 1 1 1 1 1 1 1 2 2 1 1 2/6 + 6/8 3/6 + 4/8 4/6 + 2/8 d3 <d2 <d1

To summarize the analysis: we cannot draw any conclusion that Type II
siblings of a concept c are closer to c, using s′ or d, than the weaker Type III
siblings. That is, we cannot say that Type II siblings better represent related
categories than Type III siblings.

6.4 Type I versus Type II versus Type III Siblings

This example compares now all three types of siblings are now

m
1

g
4

m
4

g
5

m
5

m
3

m
6
g
6

m
2
sg

2
7
g

m
7

n

n

n

g
1

g
3

1

2

3

n

In terms of similarity we have:

sn := s(c, n) =
1
2

(
g1

g1 + g2 + g7
+

m6

m2 + m6 + m7

)
s1 := s(c, n1) =

1
2

(
g1

g1 + g2 + g3
+

m6

m2 + m3 + m4 + m5 + m6

)
s2 := s(c, n2) =

1
2

(
g1

g1 + g2 + g3 + g4
+

m6

m2 + m4 + m5 + m6

)
s3 := s(c, n3) =

1
2

(
g1

g1 + g2 + g3 + g4 + g5
+

m6

m2 + m5 + m6

)

Note that changing g7 and m7 does not affect the similarity measures between
c and n1, n2, n3, resp. According to Section 6.1, for high values of g7 and m7, the
similarity between c and n (i.e., d) decreases. So we easily can use the values for
g1, . . . , g6,m1, . . . ,m6 of the last example to get all possible orderings of s1, s2, s3,
and choose g7 and m7 such that d < s1, s2, s3. That is, Type II siblings)are not
necessarily more similar to c than Type III siblings.

In fact, we have again that for s, all 24 strict orders of s, n, s1, s2, s3 can
appear. And the same holds for d. (As we have both for s and d 24 such strict
orders, thus 48 examples, these examples are not provided due to space limita-
tions). In short, no general statements which render some preference for siblings
used as Related Categories in terms of similarity and distance.

7 Conclusion

The notion of Type I, II and II siblings is a purely lattice-theoretic notion,
whereas the notion of distance and similarity is a purely set-theoretic notion. As
our examples show, these notions are somewhat complementary. In order to find
similar concepts to a given concept (related categories), there is no hint that one
should start with the immediate sibling neighbors of that concept. This might
sound disappointing at a first glance, but in practice our observations lead to

an important design feature in SearchSleuth. Computationally, the neighboring
siblings to the current formal concept (whether of Type I, II or III) are the eas-
iest concepts to compute and therefore represent natural candidates for related
category search. In this case the search of the sibling space proceeds by consid-
ering related categories with the best distance and similarity stored in each of
the neighboring siblings concepts for the current concept.

SearchSleuth, extends current FCA Internet search engines by positioning
the user within the information space, rather than placing the user arbitrarily or
presenting the entire space. This allows generalisation and categorisation opera-
tions to be performed against the current query concept. SearchSleuth overcomes
a number of practical difficulties in the use of FCA for Internet Search, namely a
practical approach to the construction of a sparse context and the categorisation
operation, where the conceptual focus is moved to a sibling concept of the search
concept. These paper explains how related categories are derived using a combi-
nation of order-theoretic notions of neighborhood in combination of set-theoretic
definitions of concept similarity.

References

1. Carpineto, C., Romano, G.: Exploiting the potential of concept lattices for infor-
mation retrieval with credo. Journal of Universal Computer Science 10(8) (2004)
985–1013

2. Koester, B.: FooCA - Web Information Retrieval with Formal Concept Analysis.
Diploma, Technische Universität Dresden (2006)

3. Koester, B.: Conceptual knowledge processing with google. In: Contributions to
ICFCA 2006. (2005) 178–183

4. Ducrou, J., Eklund, P.: Searchsleuth: the conceptual neighbourhood of an internet
query. In: 5th International Conference on Concept Lattices and Their Applications
(CLA 2007), http://CEUR-WS/Vol-331/Ducrou.pdf (2007) 249–260

5. Kim, M., Compton, P.: Formal Concept Analysis for Domain-Specific Document
Retrieval Systems. In: Australian Joint Conference on Artificial Intelligence. (2001)
237–248

6. Kim, M., Compton, P.: The perceived utility of standard ontologies in document
management for specialized domains. International Journal of Human-Computer
Studies 64(1) (2006) 15–26

7. Ducrou, J., Vormbrock, B., Eklund, P.: FCA-based Browsing and Searching of a
Collection of Images. In: Proceedings of 14th International Conference on Concep-
tual Structures. LNAI4068, Springer (2006) 203–214

8. Ducrou, J., Eklund, P.: Faceted document navigation using conceptual structures.
In Hitzler, P., Schärf, H., eds.: Conceptual Structures in Practice, CRC Press (2008)
251–278

9. Ducrou, J., Eklund, P.: An intelligent user interface for browsing and search mpeg-
7 images using concept lattices. International Journal of Foundations of Computer
Science 19(2) (2008) 359–381

10. Lengnink, K.: ”Ahnlichkeit als Distanz in Begriffsverbänden. In G Stumme,
R.W., ed.: Begriffliche Wissensverarbeitung: Methoden und Anwendungen, Springer
(2001) 57–71

11. Saquer, J., Deogun, J.S.: Concept aproximations based on rough sets and similarity
measures. In: Int. J. Appl. Math. Comput. Sci. Volume 11. (2001) 655 – 674

