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Abstract. Conceptual Graphs are a common knowledge representation
system which are used in conjunction with an explicit type hierarchy of
the domain. However, this means the interpretation of information ex-
pressed in conceptual graphs requires the combined use of information
from different sources, which is not always an easy cognitive task. Though
it is possible to explicitly represent the type hierarchy with Conceptual
Graphs with Cuts, this less natural expression of the type hierarchy infor-
mation is not as easy to interpret and soon takes up a lot of space. Now,
one of the main advantages of Euler diagram-based notations like Spi-
der diagrams is the natural diagrammatic representation of hierarchies.
However, Spider diagrams lack facilities such as the ability to represent
general relationships between objects which is necessary for knowledge
representation tasks. We bring together the most pertinent features of
both of these notations, creating a new hybrid notation called Concep-
tual Spider Diagrams. We provide formal syntax and semantics of this
new notation, together with examples demonstrating its capabilities.

1 Introduction

Contemporary knowledge processing systems that include inferential abilities are
typically based on some variant of formal logic where the information is internally
stored in a particular format according to the sentences of the logic used. Such
formal logics and their reasoning mechanisms have been thoroughly investigated
and form a solid background for knowledge processing systems. However, the
representation of knowledge as formulae has drawbacks if they are to be used for
communication: in particular, they can be hard to comprehend by readers who
are untrained in mathematics.

In contrast with the usual formal logics, human reasoning is often multi-
modal, involving information obtained from sentences, diagrams, sound, nuance
or moving pictures for instance. The research field of diagrammatic reasoning
investigates all forms of human reasoning and argumentation wherever diagrams
are involved. Diagrams are often deemed to be easier to comprehend than sym-
bolic notations [20, 23, 25], especially when they make good use of spatial rela-
tionships which are not utilized in symbolic notations; in particular it has been
argued that they are useful for knowledge representation systems [8, 19].
? funded by UK EPSRC grant EP/E011160: Visualisation with Euler Diagrams.



There are two major families of mathematically well-elaborated diagram-
matic reasoning systems, called conceptual graphs (CGs) and spider/constraint
diagrams (SDs/CDs), which both have their roots in the works of Charles Sanders
Peirce. Firstly, Sowa’s CGs are based on Peirce’s Existential Graphs. Various
fragments of Sowa’s CGs have been developed in a precise manner based on
graph theory (see [2] for an overview), and in these it is possible to represent
and carry out reasoning with relations of arbitrary arity. Secondly, SDs and
CDs are based on Euler diagrams which are closely related to Euler circles and
Venn-Peirce diagrams, and provide explicit means to easily represent certain re-
lationships between sets (such as subset and disjointness). Various systems of
SDs and CDs have been developed and formalized using algebraic means.

Now, although SDs and CDs are effective at expressing and reasoning with
the relationships between sets, since the spatial relationships which encode them
are well-matched [10], their usefulness in representing and reasoning with arbi-
trary relations is not so clear. On the other hand, CGs use a convenient rep-
resentation of relations, which were in fact designed for this purpose, but their
only means to express relationships between sets is to employ an underlying
type-hierarchy. This has the drawbacks that: it only allows the expression of
subset-superset relationships; it is a different representation of information, for-
mally separated from the conceptual graphs and is often not even displayed with
the CGs. This paper provides a step towards unifying these two diagrammatic
systems, drawing on the specific advantages of each system and overcoming some
of their disadvantages. We will use the underlying notation of SDs in order to
make the type-hierarchy1 of CGs both more explicit and more expressive, and
we will augment this notation with relations of arbitrary arity as is done in CGs.
The resulting notation will be called conceptual spider diagrams.

Due to limited space, we will assume that the reader is familiar with CGs;
see [2, 26] for details. In section 2 we provide an exposition of the Euler diagram
variants with a particular emphasis on SDs. We compare features of the SD
and CG notations in section 3, identifying good and bad properties, as they
relate to knowledge representation. An introduction to our hybrid notation via a
collection of simple examples is provided in section 4, where the usefulness of the
combined features becomes clear. A formalisation of the syntax and semantics of
Conceptual Spider Diagrams is given in section 5. This opens up many interesting
avenues of future research, and some of these are mentioned, together with our
concluding remarks, in section 6.

2 Euler Diagram based systems

In seminal work [24], Shin produced a sound and complete formal diagrammatic
reasoning system based on an extension of Venn diagrams, and logical reason-
ing systems based on Euler diagrams are now commonplace [4, 11, 15, 29, 31].
1 To be more precise: this paper tackles the type-hierarchy of the concepts: relations

are not adressed, as a convenient way for diagrammatically depicting subset-superset
relationships between relations goes beyond the abilities of SDs.
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Spider diagrams (SDs) and constraint diagrams (CDs) are diagrammatic reason-
ing systems based on Euler diagrams which are applied in a multitude of areas
including: file-information systems, library systems, statistical data representa-
tion and for logical software specification and reasoning systems. In this section
we give a brief review of this family of diagrams, starting from Euler diagrams,
passing through Venn-Peirce diagrams and arriving at SDs and CDs.

Euler first introduced Euler circles [3] in which sets are depicted by circles,
and the spatial relationships between the circles mimic the set-theoretic relation-
ships. The modern variant of these which we describe are called Euler diagrams:
they use simple closed curves in the plane to represents sets. Two curves do not
overlap (or more precisely, the interiors of the discs bounded by the curves are
disjoint) if and only if the corresponding sets are disjoint, and if one circle is
contained in another circle (or, more precisely, the interior of one is contained
in the interior of the other) then we have a subset relationship between the cor-
responding sets. An example of an Euler diagram is shown on the left of Fig. 1.
The interpretation is that there are three sets A,B and C such that B is a
subset of A and that B and C are disjoint; note that no information about the
relationship between A and C is provided.

A

B C

A
C

B

A
C

B

o

o

o

X X

X

X

Fig. 1. An Euler diagram, a Venn diagram, and a Venn-Peirce diagram

There are collections of set intersections that cannot be represented using
simple closed curves due to natural topological constraints [21], and so shading
in a region is used in order to express emptiness. Then, even restricting to Venn
diagrams [32], which are a subclass of Euler diagrams in which all possible set
intersections are represented, one can depict any collection of set intersections.
The middle diagram in Fig. 1 is a Venn diagram with exactly the same meaning
as the Euler diagram. Using shading within the Euler diagram system allows a
greater flexibility of representation than just using Venn diagrams with shading,
but it is still not possible to express that sets are non-empty.

Peirce augmented Venn diagrams by X-sequences, which denote an element
of the set corresponding to the region in which the sequence is placed. In his
system, the shading of Venn diagrams is replaced by placing an ‘o’ in the region.
The righthand diagram of Fig. 1 is a Venn-Peirce diagram which again expresses
that B ⊆ A and B ∩ C = ∅ holds by the use of the o’s; it also expresses that
there is an element in A\(A ∩ B ∩ C), depicted by the X-sequence with three
Xs, and that there is an element in C\(A ∪B).

Since the first paper on SDs [9] appeared, several elaborations and variations
of the ideas have been published [33]. Two examples of SDs are shown below.
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BA BA C

By convention a bounding rectangle is used to depict the universe of dis-
course, which is the ground set of the respective models in which the diagrams
are evaluated; the letter U is used to denote this universe. The lefthand diagram
above has two contours – the curves labeled A and B – representing the sets
A and B, and four zones representing all possible set intersections involving
A and B. The diagram contains two spiders, and the shaded zone representing
A−B is the habitat of the first spider, whilst the habitat of the second spider
is the region representing B which is composed of two zones representing A∩B
and B−A. The interpretation is that there are two sets A and B, the set A−B
contains exactly one element, and the set B contains at least one element.

So, there are two important differences between the semantics of Venn-Peirce
diagrams and those of SDs: for SDs different spiders necessarily denote different
objects, whilst the objects represented by different X-sequences in Venn-Peirce
diagrams are not necessarily distinct; the shading in SDs means that a region
does not contain more elements than the elements represented by the spiders
touching that region, whilst for Venn-Peirce diagrams the ‘o’ indicates emptiness
independently of any impinging X’s. Now, in the righthand diagram there is
another contour representing a set C and it does not overlap with the contours
representing A and B and so C and A∪B are disjoint. Moreover, there are three
distinct elements u, v and w (represented by the spiders) such that u, v ∈ A and
w ∈ U − (A − B). Due to the shading the set A − B contains exactly u and v,
and A ∩B either contains no elements or exactly w.

The above diagrams are called unary SDs, but spider diagrams can also be
propositionally combined using the logical operators u (‘and’) and t (‘or’): an
example which uses these conjunctors is shown below.

BA BA C
BA

D

Similar to CGs, an important facet of SDs is that they are not only diagram-
matic representation languages, but that they also facilitate diagrammatic rea-
soning. The system of SDs [16] is equipped with a sound and complete calculus.
Automatic theorem provers for Euler diagrams and SDs have been developed and
implemented [7, 28], with the goal of aiding the user’s understanding of proofs.
A tableaux system for SDs has also been implemented by Patrascoiu [22].
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Finally, CDs were first proposed by Kent [18] as a notation for visualizing
object-oriented invariants in software modelling and they can be used to express
operation pre-conditions and post-conditions for modelling purposes [14]. They
extend SDs, allowing the explicit representation of universal quantification via
an extra type of spiders, called universal spiders which are indicated by asterisks,
and arrows which provide information about binary relations. An example of a
CD is show below, where the core information expressed is that “every person
can only borrow books that are in the collections of libraries they have joined”.

Person Books

Libary

canBorrow

joined collection

*

Since Kent’s informal idea was proposed, several papers have provided var-
ious levels of mathematical formalism for Kent’s vision. Problems such as the
ambiguities in ordering of quantifiers have been solved by augmenting with an
explicit reading tree in [5] where formal syntax and semantics for constraint di-
agrams are provided. Although some rules have been developed [4], a sound and
complete calculus has not yet been developed for this system. However, for cer-
tain restricted fragments of the system, sound and complete calculi have been
developed (e.g. in [27] no universal quantifiers were allowed as well as severe
restrictions on the allowable relations and in [30] the restriction to order all of
the universal quantifiers after all of the existential ones was imposed).

We elaborate briefly on the definition of relations between spiders in these
systems. Arrows place restrictions on the relations determined by their labels.
In particular if an arrow labelled R has source a spider s and target a spider t
then the semantic phrase “S.R = T” is associated with this arrow (where S is
the object represented by s and similarly for T , and S.R := {x | (S, x) ∈ R}).

BA

*

r

t

C

s

Using the semantics in [5], but adopting one of the conventions of [30] of reading
the universal spiders after the existential ones (removing the need for an explicit
depiction of a reading tree), a reading of the diagram is given by:

Euler notation︷ ︸︸ ︷
C ∩ (A ∪B) = ∅∧

objects denoted by (existential) spiders︷ ︸︸ ︷
∃u ∈ U − (A ∪B ∪ C).∃b ∈ B.∃c1, c2 ∈ C :

(c1 6= c2 ∧ u.R = A ∧ c1S = b ∧ ∀x ∈ A−B : x.T = {c2}︸ ︷︷ ︸
reading the arrows

).
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3 Desirable features of a hybrid notation

We investigate the advantages and disadvantages of some features of CGs and
SDs that are useful for knowledge representation reasoning system with the aim
of building a hybrid notation using the most pertinent features.

CGs are based on an underlying type hierarchy, which is usually a partially or-
dered set that indicates the subtype/supertype relationships between the types.
This type hierarchy is handled as some sort of background information, not ex-
plicitly appearing in the actual CGs, but it is used for reasoning purposes.2 This
separation of information can make reasoning more difficult for humans. On the
other hand, SDs provide an effective method for expressing the relationships
between sets, since they are based on Euler diagrams. Thus if one combined the
Euler diagrams features with a CG then one could make the type hierarchy of
CGs explicit thereby making it visible to the user and aiding them in reasoning
tasks; since SDs depict relationships between sets in a very iconic manner, the
user will not only read off only the information which was needed to construct
the type hierarchy, but other information which can be deduced from the type
hierarchy can often easily been read of the SDs as well. This advantage of icons
is described by Peirce in [12], 2.279, where he writes that “a great distinguishing
property of the icon is that by the direct observation of it other truths concerning
its object can be discovered than those which suffice to determine its construc-
tion.” In the modern research field of diagrammatic reasoning, Shimojima coined
the term free ride for this property of iconic representation [23].

Another advantage of bringing the type hierarchy to the foreground, using
SDs is that we extend the expressiveness of the type hierarchies. Whilst the exist-
ing type hierarchies used only express subtype/supertype relationships between
the types, taxonomies often contain disjointness information as well, and since
disjointness constraints as well as subset relations can be naturally expressed
with SDs, we can overcome this limitation.

When building a hybrid system, it pays to consider the semantic options
carefully. The choice of shading over o’s increases the expressiveness by allowing
the expression of upper bounds on the cardinality of sets. The choice of us-
ing spiders over X-sequences is an interesting choice, with the spider semantics
adhering closely to diagrammatic design principles (distinct spiders meaning dis-
tinct objects) whilst the use of X-sequences closely matches the usual symbolic
logic rules. We will actually investigate both options for the semantics of spi-
ders (hereafter we will refer to the SD-semantics or the VP-semantics of spiders
instead of spiders versus X-sequences).

When considering relations between objects, we notice that in CDs, the se-
mantics for arrows is significantly different to the semantics for binary relations
in FOL or CGs. For example, if we have two spiders standing for objects u and
v, an arrow between these two spiders does not mean that the corresponding

2 If projections are chosen for reasoning, we have appropriate conditions for the pro-
jections which reflect the type hierarchy. If transformation rules are used instead, we
usually have type-generalization rules among these transformation rules.
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objects stand in relation R (i.e. uRv). Instead, we have the stronger condition
u.R = {v} (i.e. uRv and there is no object w 6= v with uRw). Moreover, con-
straint diagrams do not allow relations with an arity > 2 (although this could be
addressed by using multi-sourced or targetted arrows). Thus we choose to aug-
ment SDs with a different means to express relations between objects, adapted
from the handling of relations in CGs.

4 Hybrid System examples

Before we come to the formalization, we will exemplify our approach with the
following well known toy example from the CG-community:

:*MatCat : * on
1 2

Cat

The meaning of this CG is ‘there is a cat and there is a mat, and the cat is on
the mat’; according to the usual semantics of CGs, it is not guaranteed that the
cat and the mat are different objects. We assume that we have an underlying type
hierarchy, with types >, Animal, Cat, Thing, Mat, and Rug. The type-hierarchy
is a partially ordered set, indicating only the supertype/subtype relations, and
is shown on the left of Fig. 2. On the right of the figure an extension of this
type-hierarchy is depicted, where disjointness-constraints are added.

Animal

Cat

Thing

Mat Rug

disjoint

disjointMat Rug

Animal Thing

Cat

Fig. 2. The underlying type hierarchy: without, and then with disjointness constraint

Now, if one wished to explicitly display this type hierarchy in CGs, we need
the facility to express supertype-subtype relations and disjointness constraints.
This can be done with CGs with cuts, as shown in Figure 3, but obviously this CG
suffers from readability problems. Alternatively, we can depict the type hierarchy
with an Euler Diagram, as shown in Fig. 4. The >-concept corresponds to the
universe of discourse, so there is no need to have a contour for it (although one
could think of the rectangular bounding box for the diagram as signifying this
concept). This diagram is significantly more readable than the CG of Fig. 3, and
this may be partly due to free rides: some information which is only implicitly
given in the CG in Fig. 3 or from the diagram in Fig. 2 (e.g. that that types Cat
and Mat are disjoint) can immediately be read off from the Euler diagram.

We now demonstrate our proposed hybrid notation for the cat-on-mat exam-
ple. In the lefthand diagram of Fig. 5, the Euler diagram of Fig. 4 is augmented
with two spiders, denoting a cat and a mat, and the relationship ‘on’ between
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: *
21 : *Thing21 : *Animal: *

: *Animal 21 Cat : *Cat

: *Thing

: *Thing 21 : *Animal

21: *Thing :*Mat

:*Rug

:*Mat :*Rug

21

21

Fig. 3. The underlying type hierarchy with disjointness constraints as a CG with Cuts

Animal Thing

Cat
Rug

Mat

Fig. 4. The type hierarchy with disjointness constraints as an Euler Diagram

them. This diagram contains the complete type hierarchy plus the information
that there is a cat on a mat. In the righthand diagram, we show only the frag-
ment of the type hierarchy that is necessary to express the ‘there is a cat on a
mat’ statement (in real-life scenarios, it will be a choice of the knowledge engi-
neer which part of the type-hierarchy is actually displayed). This diagram is still
strictly more expressive than the initial CG of this section: since the contours
for cat and for mat do not overlap, this diagram also contains the information
that the cat and the mat are different. We note that in contrast to the spiders,
the location of the relation-symbol ‘on’ is not semantically important.

on 21

Animal Thing

Cat
Rug

Mat

MatCat
on
21

Fig. 5. Two hybrid diagrams for ‘a cat is on a mat’

The next diagram shown in Fig. 6 is more sophisticated, and since it involves
distinct spiders touching the same region, we consider both the SD-semantics
and the VP-semantics. As well as the hierarchy information, it expresses that
Yoyo is a cat, there is an unnamed cat (which is different from Yoyo in the SD-
semantics, but possibly the same as Yoyo in the VP-semantics), and there exist
no other cat (this holds for both semantics given the interpretation of shading),
Yoyo is on a mat, and the unnamed cat is either on a rug or a mat (which is
different from Yoyo’s mat in the SD-semantics, but possibly the same in the
VP-semantics).
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on 21

on 21

Animal Thing

Cat
Rug

MatYoyo

Fig. 6. A more sophisticated hybrid diagram

If we express this information by means of a CG with cuts, even without
expressing the type-hierarchy information, then the outcome is significantly less
readable. The diagram below shows this, using the SD-semantics; the corre-
sponding CG for the VP-semantics can be obtained by removing the two verti-
cal, negated identity edges in the middle of the CG making the diagram only
slightly more comprehensible.

:*

:*Rug

:*Mat

:*Mat

Cat : *Cat on1 2

on1 2Cat:Yoyo

Cat : *Cat

5 Formalisation

When considering the formalization of diagrammatic logic systems, it is essential
to realize that there are two levels of notation. Certain graphical features of the
diagram may be varied without changing the meaning of the diagram. For exam-
ple, the shape of the contours in Euler diagrams or the shape of cuts in CGs with
cuts is not semantically important; nor does the positioning of the boxes of a CG
matter. Thus we have to deal with an abstract syntax which prescinds the mean-
ingful information from such graphical properties, and a concrete syntax, which
corresponds to the actual drawings of diagrams. This vital distinction has been
discussed in the CG-community [1] as well as in the SD- and CD-community
[13]; both papers argue that it is essential to elaborate the abstract syntax in
a formal manner, but differ in their opinions concerning the concrete syntax.
In [1] diagrammatic systems like existential or conceptual graphs are considered,
where every diagram at the abstract level has a graphical representation (i.e. a
corresponding concrete diagram), and argues that a mathematical formalization
of the concrete syntax is not needed. However, for Euler diagrams the situation
is different, since not all collections of sets intersections can be graphically repre-
sented without introducing some extra set intersections (or zones). That is, there
are abstract Euler diagrams which are not drawable using simple closed curves,
without introducing shaded zones, and although this introduction is not par-
ticularly problematic in logical reasoning systems it might be very undesirable

9



in information display systems. So unsurprisingly, [13] argues that the concrete
syntax as well as the relationship between the abstract and concrete syntax has
to be mathematically formalized as well.

The methodology usually employed is to build Euler diagram based reason-
ing systems at the abstract level and then generate concrete diagrams (under
various sets of wellformedness conditions) when it is possible to do so. On the
positive side, from a human interaction point of view, the automatic generation
of concrete Euler diagrams from abstract Euler diagrams for a strict set of well-
formedness conditions is possible [6]. When extending to spider and constraint
diagrams no extra substantial representational difficulties occur. The conceptual
spider diagrams that we introduce are also extensions of spider diagrams and so
they have to cope with these same difficulties, but the augmentation to express
relations does not add any complexity to this issue either. For this reason, we in-
troduce only the abstract syntax of conceptual spider diagrams (although there
is no real problem in also defining the concrete syntax formalization).

5.1 Conceptual Spider Diagrams

Definition 1 (Alphabet). An alphabet is a triple A := (O, C,P) of dis-
joint sets O, C, P of object names, concept names and predicate names,
respectively. To each predicate name P , we assign its arity ar(P ). Let ∗ be
another sign, the generic marker. We set O∗ := O

.
∪ {∗}.

In the examples provided earlier, object names or the generic marker ∗ were
used as the labels of spiders, concept names were the labels of contours, and
predicate names were the labels of predicate edges. An abstract zone represents
a particular set intersection, and as such it will be defined to be a pair of disjoint,
finite sets (a, b), where the set of contour labels a are those of the containing sets
and the set of contour labels b are the excluding sets (i.e. the rest of the contour
labels). In a unary diagram specifying the containing set a is sufficient (since
a and b form a partition of the set of concept names C), but when considering
non-unary diagrams, or when reasoning with diagrams, the contour label sets
may vary and so the pair of sets is required. Let Z and R := P(Z) denote the
sets of all zones and regions respectively, where P denotes the power set.

Definition 2 (Conceptual Spider Diagram). An unitary conceptual
spider diagram (abbreviated unitary CSD), d, over an alphabet A is a tuple
(L,Z,Z∗, S, η, E, ν, κ) whose components are as follows:

1. L := L(d) ⊆ C is a finite set of concept names.
2. Z := Z(d) := {(a, L− a) : a ⊆ L} (with Z(d) ⊆ Z) is a set of zones s.t.

(i) ∀l ∈ L ∃(a, b) ∈ Z : l ∈ a and (ii) (∅, L(d)) ∈ Z .

We define R(d) = P(Z)− {∅} to be the set of regions in d.
3. Z∗ := Z∗(d) ⊆ Z is a set of shaded zones. We define R∗(d) = P(Z∗)−{∅}

to be the set of shaded regions in d.
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4. S := S(d) is a finite set of spiders with S(d) ∩ (C ∪ Z ∪R) = ∅.
5. A function, η := ηd : S(d) → R(d) which returns the habitat of each spider.
6. E := E(d) is a finite set of predicate edges with E(d)∩ (C ∪Z ∪R) = ∅.
7. A function, ν := νd : E(d) →

⋃
n∈N(S(d))n which returns for each edge an

n-tuple (n ∈ N) of spiders. Let En := En(d) := {e ∈ E(d) | ν(e) ∈ (S(d))n}.
8. A function, κ := κd : S(d) ∪ E(d) → O∗ ∪ P which returns for each spider

s ∈ S(d) its label κ(s) ∈ O∗, and which returns for each predicate edge
e ∈ E(d) its label κ(e) ∈ P, where we have ar(κ(e)) = n for e ∈ En(d) (i.e.,
κ(e) has the appropriate arity).

Define conceptual spider diagrams (CSD) as follows:

– Every unitary conceptual spider diagrams is a conceptual spider diagram.
– if D1 and D2 are finite bags (multisets) of conceptual spider diagrams, then
∨(D1 ] D2) and ∧(D1 ] D2) are conceptual spider diagrams, where ] is the
union for bags.

Note that there is an empty CSD, ⊥ := (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). To provide an
example for Def. 2, we return to the diagram of Fig. 6. For the types, we use to
following abbreviations: A(nimal), C(at), T(hing), M(at), R(ug). The abstract
syntax of the concrete diagram of Fig. 6 is given by:

L(d) := {A,C, T, M, R}
Z(d) := {({A}, {C, T,M,R}), ({A,C}, {T,M,R}), ({T}, {A,C,M,R}),

({T,M}, {A,C, R}), ({T,R}, {A,C,M}), ({}, {A,C, T ;M ;R})}
Z∗(d) := {({A,C}, {T,M,R})}
S(d) := {s1, s2, s3, s4}

ηd(s1) := ηd(s2) := {({A,C}, {T,M,R})}
ηd(s3) := {({T,M}, {A,C, R}), ({T,R}, {A,C,M})}
ηd(s4) := {({T,M}, {A,C, R})}
E(d) := {e1, e2}

νd(e1) := (s1, s3) and νd(e2) = (s2, s4)
κd(s1) := κd(s3) := κd(s4) := ∗, κd(s2) := Yoyo, κd(e1) := κd(e2) := on.

The semantics is based on classical Tarski-style interpretations.

Definition 3 (Interpretation). An interpretation is a pair I := (U, I)
consisting of an universe and an interpretation mapping I which maps
object names to elements of U , concept names to subsets of U , and predicate
names of arity n to subsets of Un.

A point to note is that we are conforming to the general semantics of SDs,
but contrasting to the usual semantics of FOL and CGs, by allowing empty
universes. We are now prepared to provide the semantics for CSDs, and in fact
we provide two slightly different readings of CSDs: the SD-semantics, where
different spiders denote different objects; and the VP-semantics, where different
spiders might denote the same object.
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Definition 4 (Semantics). Let a unary CSD d := (L,Z,Z∗, S, E, ν, κ) over
an alphabet A := (O, C,P) and an interpretation I := (U, I) be given.

– First, we canonically extend I to zones (a, b) and regions r by setting

I(a, b) :=
⋂

C∈a

I(C) ∩
⋂
C∈b

I(C) and I(r) :=
⋃
z∈r

I(z)

– We say that the plane tiling condition holds iff we have
⋃

z∈Z I(z) = U
(this condition reflects the Euler diagram features of CSDs).

– Any mapping val : S → U with val(s) = I(κ(s)) for κ(s) 6= ∗ is called
valuation (of the spiders). If we have val(s) ∈ I(η(s)) for each spider
s ∈ S, we say that val satisfies the spiders condition. If val is injective,
we say that val satisfies the strangers condition. If for each edge e ∈ E
with ν(e) = (s1, . . . , sn), we have (val(s1), . . . , val(sn)) ∈ I(κ(e)) we say that
val satisfies the predicates condition.

– We say that I satisfies d in the VP-sense iff the plane tiling condition
holds and if there exists a valuation which satisfies the spiders condition and
the predicates condition. We write I |=V P d. If the valuation additionally
satisfies the strangers condition then I satisfies d in the SD-sense, and
we write I |=SD d.

6 Conclusion

We have provided a novel formal diagrammatic system called conceptual spider
diagrams which utilizes useful features from CGs and SDs. A demonstration
of its potential has also been provided via examples. This is a step towards a
unification of CGs and SDs, and this “best of breed” approach looks promising.
It also raises many interesting avenues of future research.

Firstly, the usability of the system of CSDs has to be thoroughly compared
to SDs and to CGs. Although the examples in section 4 give an indication that
that CSDs are easier to read than CGs, this benefit might get lost if we have type
hierarchies with many overlapping concepts, since this could lead to underlying
Euler diagrams where the contours are mutually intersecting to a large extent
(thereby rendering the diagrams more cluttered [17] and hence more difficult to
read). One would imagine that the more disjointness-constraints a type-hierarchy
has the easier the corresponding Euler diagram is to read, but the associated
tradeoff needs to be scrutinized carefully.

Secondly, it has to investigated whether CSDs can be extended in a way that
not only the type-hierarchy of concepts, but the type-hierachy of relations can
be diagrammatically depicted as well in a convenient way.

Thirdly, sound and complete calculi for the system have to be developed.
Since we have two different semantics, we will require two slightly different cal-
culi: these calculi should have many rules in common, differentiating only in
rules which reflect the difference between the two semantics. Since CSDs are a
hybrid of SDs and CGs, it is desirable that the calculi do not differ too much
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from the existing calculi for SDs and CGs.3 Furthermore, if CSDs are to be used
in practice it is likely that only limited subsets of all the concepts in a given
type-hierarchy are going to used at any one time (as we have shown in the right-
hand diagram of Fig. 5). As an example of the types of rules for CSDs, recall
that in the calculi for SDs, there are rules which allow the addition or removal of
contours; it would be reasonable to have rules in the CSD calculi which allow the
addition or removal of contours with respect to a given type-hierarchy. Another
thing to keep in mind is that a set of rules designed with proving completeness
of the system in mind might differ dramatically from a set of rules designed for
human interaction. Trying to capture all of these features means that the rules
for the calculi will have to designed very carefully.

In the long term the intention is to develop CSDs as a fully fledged, formal,
diagrammatic reasoning system, unifying the existing systems of SDs, CDs and
CGs, utilising the most appropriate features of each notation.
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