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Abstract A main feature of many logics used in computer science is
a means to express quantification. Usually, syntactical devices like vari-
ables and quantifiers are used for this purpose. In contrast to that, in
conceptual graphs, a single syntactical item, the generic marker ‘∗’ is
used. Nonetheless, sometimes conceptual graphs with variables have to
be considered. If the generic marker is replaced by variables, it has to be
investigated how this syntactical difference is reflected by the semantics
and transformation rules for conceptual graphs. In this paper, this task
is carried out for the system of concept graph with cuts (CGwCs). Two
different classes of CGwCs with variables is introduced, and for both, a
semantics and an adequate calculus for CGwCs is provided.

1 Introduction

A main feature of many logics used in computer science, like the different versions
of description logic, first oder logic (FOL), conceptual graphs or the resource
description framework (RDF), is a means to express quantification.

In any linear symbolic notion of logic (like the common notions for FOL or
description logic), variables and quantifiers are the syntactical entities which are
used for this purpose. Even in RDF, which can be understood as a diagrammatic
reasoning system, so-called blanks are used to express existential quantification,
which are very much used like variables.

The use of variables has some consequences for the handling of formulas. A
variable may occur several times in a formula. In order to grasp the meaning
of a formula, one has to keep track of these different occurrences, particularly,
whether they are in the same scope of an (existential or universal) quantifier.
Particularly, we have to distinguish between variables and their occurrences in a
formula. Moreover, one needs some means to rename variables, which has to be
captured either by a convention like the so-called alpha conversion of formulas,
or by some rules in the calculus.

For conceptual graphs, the situation is different. There exists only one syn-
tactical element which is used to express existential quantification: the generic
marker ‘∗’. In a conceptual graph, different occurrences of ‘∗’ as referent in dif-
ferent concept boxes refer to (not necessarily) different entities. As only one sign
for quantification is used, one does not have to keep track of generic markers.
Moreover, in the handling of conceptual graphs, there is no need to distinguish
between the sign and its occurrences, and a convention like the alpha-conversion



of symbolic logic is not needed. This makes conceptual graphs easier to read and
handle by humans, which is one of the mains goals of conceptual graphs. Using
‘∗’ instead of variables is a strong means to achieve this goal.

Nonetheless, sometimes it is reasonable to use variables in conceptual graphs
as well. For example, finding a linear notation for conceptual graphs (the linear
form) is much easier if generic markers are replaced by variables.1 The use of
variables instead of generic markers in any fragment of conceptual graphs has
to be reflected by the semantics, as well by any calculus. Approaches for some
specific forms of concept graphs with variables are investigated be Klinger in
[7, 8] and Wille in [14, 15]. But, to the best of my knowledge, a comprehen-
sive discussion between the differences of conceptual graphs with variables and
conceptual graphs with generic markers has not been provided yet.

For simple conceptual graphs, which do not provide nestings or any means of
negation, the use of variables instead of generic markers does not lead to major
. The definition of their syntax and semantics is straightforward. Moreover, a
calculus based on projections can easily provided. For example, the projections
of [2] for conceptual graphs or the projection-like mappings for RDF (see [6, 1])
could be adopted for simple conceptual graphs, or the diagrammatic calculus of
a work in preparation ([4]) could be used. But we run into problems if we add a
means to express negation to conceptual graphs.

Recall that in conceptual graphs, a negation box ¬ G is used to negate
the enclosed subgraph G. Let us first consider some simple examples to see some
problems we have to cope with. Assume that we allow that arbitrary concept
boxes are labeled with the same variable. Consider the following two graphs:

: x S and : x S: xR

The intuitive meaning of the left graph is clear: It is ‘it is not true that there
exists an x with S(x)’, i.e., no object has the property R. But what about the
right graph? As we have no special sign like the quantifiers of symbolic logic
for indicating the scope of variables, it is usually assumed that all variables in
a conceptual graph denote the same object, thus the scope of a variable (i.e.,
the context where the existential quantification takes place) is the innermost
context which contains all boxes which are labeled with x. For our right graph,
this is the sheet of assertion. Due to this problem, Sowa considers only conceptual
graphs where each coreference set has a defining label. The graph we consider is
semantically equivalent to the graph below which has defining labels.

: x S: x: xR

1 It is well known that conceptual graphs are based on Peirce’s diagrammatical existen-
tial graphs, where lines of identity are used to express existential quantification and
identity. But even Peirce replaced in some places the lines of identity by variables,
which he called selectives (but he strongly recommended to avoid them).



So, if we add a means to express negation, we have to be careful in the definition
of the syntax and semantics of conceptual graphs with variables.

It is possible to consider conceptual graphs with variables where each variable
occurs almost once. Or graph is equivalent to each of the two graphs below which
satisfy this restriction.

S: xR : y : z and : xR S

Of course, the semantical equivalence of all the graphs we considered has to
reflected by any calculus as well, which shows that in any calculus, we need
rules which meet the specific properties of variables. For example, we need rules
which allow to rearrange boxes which are labeled with the same variable, and
we have to discuss how a renaming of variables has to he handled. A calculus
like this goes beyond a simple one-to-one-translation of the calculus for CGwCs
with generic markers.

In [3], the system of Concept Graphs with Cuts (CGwCs) is comprehensively
investigated. CGwCs can be understood as a mathematical elaboration (in terms
of mathematical graph theory) of conceptual graphs with negation boxes, where
the negation boxes are replaced by a syntactical elements called cuts, and the
coreference links are replaced by identity edges. Recall that cuts are graphically
represented as bold ovals. In [3], a contextual semantics and a sound and com-
plete calculus, based on Peirce’s calculus for existential graphs, for CGwCs is
provided.

In this paper, the differences between generic markers and variables are dis-
cussed. The scrutiny will be carried out on CGwCs, i.e. it will be shown how
the results of [3] for CGwCs with generic markers can be transferred to CGwCs
with variables.

In the next section, the basic definitions for CGwCs with variables are pro-
vided. In the third section, we start our investigation with a discussion of CG-
wCs with variables where each variable occurs almost once. These graphs will
be called purified CGwCs with variables. This is no loss of expressivity, as each
CGwCs with variables is semantically equivalent to a purified one. Purified CG-
wCs stand in one-to-one-correspondence to CGwCs with generic markers. Based
on this correspondence, the adequate calculus for CGwCs with generic markers
is translated into an adequate calculus for purified CGwCs with variables. This
will be done in the next section of this paper.

In the fourth section, we extend the class of purified CGwCs with variables to
CGwCs with variables where variables may occur more than once. The calculus
of the preceeding section is extended in order to obtain an adequate calculus
for this bigger class of CGwCs with variables. Finally, a short discussion of the
results is provided.

2 Basic Definitions and Semantics

We start with the definition of the underlying alphabet for CGwCs.



Definition 1 (Alphabet).

1. Let Var := {x1, x2, . . .} be a countably infinite set. The elements of Var are
called variables. Let ∗ be a further sign, which is called the generic marker.

2. An alphabet is a triple A := (G, C,R) where G is a finite set of object names,
(C,≤C) is a finite ordered set of concept names with a greatest element >,
and (R,≤R) is a family of finite ordered sets (Rk,≤Rk

), k = 1, . . . , n of
relation names. Let id ∈ R2 be a special name which is called identity.

Next, we define different versions of CGwCs with different means to express
existential quantification. In [3], CGwCs with generic markers are provided as
mathematical structures (V,E, ν,>, Cut, area, κ, ρ), where ρ : V → G ∪ {∗} is a
mapping which assigns to each vertex v ∈ V its reference ρ(v), being an object
name or the generic marker. Now we consider a modified version of these graphs
with a label mapping ρ : V → G∪Var. Let G be such a graph. Let VarG := {α ∈
Var | ∃v ∈ V : ρ(v) = α} be the set of the variables which occur in G. In the
introduction, we already discussed that the scope of a variable α is the innermost
context which contains all vertices labeled with x. Mathematically, for α ∈ VarG,
we set scope(α) :=

∨
{c ∈ Cut ∪ {>} | ∃v ∈ area(c) : ρ(v) = α}. Finally, similar

to the definition of V ∗ and V G in [3], we set V Var := {v ∈ V | ρ(v) ∈ Var}, and
the vertices in V Var are called variable vertices or variable boxes.

Similar to Sowa’s defining labels of coreference sets, we define dominating
variable boxes to be variable boxes v ∈ V which satisfy cut(v) = scope(ρ(v)).
For such a v, each w ∈ V with ρ(w) = ρ(v) is said to be dominated by v. If we
otherwise have ρ(w) 6= ρ(v) for each w ∈ V with w 6= v, the dominating box v
will be called singular variable box.

Now we can define the two classes of CGwCs with variables which will be
discussed in this paper. A graph G := (V,E, ν,>, Cut, area, κ, ρ) with ρ[V ] ⊆
G ∪ Var is called concept graph with cuts (CGwC) and variables over A, if for
each α ∈ VarG there exists a dominating variable box v with ρ(v) = α. If we
have moreover v1 = v2 for all v1, v2 ∈ V with ρ(v1) = ρ(v2) ∈ Var, then G is
called purified concept graph with cuts (CGwC) and variables over A.

As in [3], we use power context families as model structures for concept
graphs. The models are defined as follows:

Definition 2 (Models). A power context family ~K := (Ki)k=0,...,n is a family
of contexts Kk := (Gk,Mk, Ik) that satisfies Gk ⊆ (G0)k for each k = 1, . . . , n.

For an alphabet A := (G, C,R) and a power context family ~K, we call the
union λ := λG ∪̇λC ∪̇λR of the mappings λG :G → G0, λC : C → B(K0) and
λR:R → R~K a ~K-interpretation of A if λC and λR are order-preserving, λC(>) =
>, λR(Rk) ⊆ B(Kk) for all k = 1, . . . , n, and (g1, g2) ∈ Ext(λR(id)) ⇔ g1 = g2

hold for all g1, g2 ∈ G. The pair (~K, λ) is called A-structure or A-model.

Similar to [3], we have to define valuations for CGwCs with variables, and
based on valuation, we can define how CGwCs with variables are evaluated
in models. The next two definitions have in [3] counterparts for CGwCs with



generic markers, which are slightly modified to encompass the fact that we allow
different variable vertices which are labeled with the same variable.

Definition 3 (Partial and Total Valuations for CGwCs with Variables).
Let G := (V,E, ν,>, Cut, area, κ, ρ) be a CGwC with variables and let M be a
A-structure. A mapping ref : V ′ → G0 with V G ⊆ V ′ ⊆ V , ref(v) = λG(ρ(v))
for all v ∈ V G , and ref(v1) = ref(v1) for all v ∈ V Var is called a partial
valuation of G. If we moreover have V ′ ⊇ {v ∈ V Var | scope(ρ(v)) > c} and
V ′ ∩{v ∈ V Var | scope(ρ(v)) ≤ c} = ∅, we say that ref is a partial valuation for
the context c. If V ′ = V holds, then ref is called (total) valuation of G.

Definition 4 (Endoporeutic Evaluation of Graphs).
Let G := (V,E, ν,>, Cut, area, κ, ρ) be a CGwC and variables and let M be

a A-structure. Inductively over the tree Cut∪ {>}, we define (
→
K, λ) |= G[c, ref ]

for each context c ∈ Cut ∪ {>} and every partial valuation ref : V ′ ⊆ V → G0

for c. We set (
→
K, λ) |= G[c, ref ] :⇐⇒

ref can be extended to a partial valuation r̃ef : Ṽ ′ → G0 with Ṽ ′ :=
V ′ ∪ {v ∈ V Var | scope(ρ(v)) = c} which satisfies:

– r̃ef(v) ∈ Ext(λC(κ(v))) for each v ∈ V ∩ area(c) (vertex condition)
– r̃ef(e) ∈ Ext(λR(κ(e))) for each e ∈ E ∩ area(c) (edge condition)
– (

→
K, λ) 6|= G[d, r̃ef ] for each d ∈ Cut ∩ area(c) (cut condition)

For (
→
K, λ) |= G[>, ∅] we write (

→
K, λ) |= G. If we have two concept graphs G1,

G2 such that (
→
K, λ) |= G2 for each contextual structure (

→
K, λ) with (

→
K, λ) |= G1,

we write G1 |= G2.

We will consider CGwCs with variables only up to isomorphism and renaming
of the variables. This idea is the well known alpha-conversion of formulas in linear
and symbolic formalizations of FOL. Graphs which are identical up to different
variable names will be called equivalent. This term is adopted from the Resource
Description Framework, RDF).

Definition 5 (Equivalence of Graphs). Let G := (V,E, ν,>, Cut, area, κ, ρ),
G′ := (V ′, E′, ν′,>′, Cut′, area′, κ′, ρ′) be two CGwCs with variables. We will say
that G and G′ are equivalent, if G′ is isomorphic to a CGwC with variables G′′ :=
(V,E, ν,>, Cut, area, κ, ρ′′) such that there is a bijective mapping f : Var → Var
which satisfies ρ′′(v) = ρ(v) for each v ∈ V with ρ(v) ∈ G and ρ(v′′) = f(ρ(v))
for each v ∈ V with ρ(v) ∈ Var .

Obviously, equivalent graphs have same meaning, i.e. if M is a model and G,G′

are two equivalent CGwCs with variables over A, we haveM |= G ⇐⇒M |= G′.
In the forthcoming calculus, we could employ a rule which allows to transform

a CGwC with variables into an equivalent graph. In this work, we use a more
convenient approach: To ease the handling of CGwCs with variables, we agree
that CGwCs with variables are considered only up to equivalence.



3 Purified CGwCs with Variables

In the following sections, we will deal with different kinds of CGwCs. Before we
proceed, a simple notational convention shall be introduced: In the following,
we will sometimes use upper indices to denote which kind of CGwCs we use.
An upper index g denotes CGwCs with generic markers, and the upper indices
v and pv denotes CGwCs with variables and purified CGwCs with variables,
respectively. Moreover, we will use upper indices in brackets to denote mappings
between these different classes of CGwCs.

We start with the canonical translation from purified CGwCs with variables
to CGwCs with generic markers, which is given by replacing each variable by a
generic marker. Vice versa, if a CGwCs with generic markers is given, we can
replace each generic marker by a fresh variable. Of course, the assignment of
variables to generic vertices is not uniquely given, but this poses no problem, as
we consider CGwCs with variables only up to equivalence.

Definition 6 (Translations (g) and (pv)). Let G := (V,E, ν,>, Cut, area, κ, ρ)
be a purified CGwC with variables. Then let G(g) := (V,E, ν,>, Cut, area, κ, ρ(g))
the CGwC with generic markers with ρ(g)(v) = ρ(v), if v ∈ G, and ρ(g)(v) = ∗,
if v ∈ V Var. Vice versa, let G := (V,E, ν,>, Cut, area, κ, ρ) be a CGwC with
generic markers, and let f : V ∗ → Var be an injective mapping from the set of
generic nodes into the set of variables. Then let G(pv) be (the equivalence class
of) the purified CGwC with variables Gpv := (V,E, ν,>, Cut, area, κ, ρ(pv)) with
ρ(pv)(v) = ρ(v), if v ∈ G, and ρ(pv)(v) = f(v), if v ∈ V ∗

Obviously, the the mappings (pv) and (g) are mutually inverse bijections be-
tween purified CGwCs with variables and CGwCs with generic markers. More-
over, entailment is respected by (pv) and (g) , i.e. if M be is model and if Gv is
a variable-purified CGwCs and Gg is a CGwC with generic markers, we have

M |= Gv ⇐⇒ M |= G (g)
v and M |= Gg ⇐⇒ M |= G (pv)

g (1)

These results justify the use of the term ‘translation’ for (pv) and (g).
Now we have to carry over the adequate calculus for CGwCs with generic

markers to purified CGwCs with variables. The idea is straightforward: We will
translate each rule for CGwCs with generic markers to a corresponding rule
for purified CGwCs with variables. Let r be a rule of the calculus for generic
CGwCs. We will write Ga ` g

r Gb, if Ga,Gb are two CGwCs with generic markers
such that Gb can be derived from Ga by an application of the rule r. Now we
will ‘translate’ each rule ` g

r to a rule ` pv
r for purified CGwCs with variables,

i.e., the calculus ` pv will satisfy that

Ga ` g
r Gb ⇐⇒ G(pv)

a ` pv
r G

(pv)
b (2)

holds for all CGwCs with generic markers Ga and Gb. Note that vice versa, as
(pv) and (g) are mutually inverse bijections, from (2) we obtain Ga ` pv

r Gb ⇐⇒
G

( g)
a ` g

r G
( g)
b for all CGwCs with variables Ga and Gb as well.



If the calculus ` pv is designed this way, it is complete. In order to see this,
let Ga, Gb be two purified CGwCs with variables. Then we have:

Ga |= Gb
(1)⇔ G(g)

a |= G
(g)
b ⇔ G(g)

a ` g G
(g)
b

(2)⇔ G(g)(pv)
a ` pv G

(g)(pv)
b ⇔ Ga ` pv Gb

Now we can provide the translations of the calculus for CGwCs with generic
markers to purified CGwCs with variables such which satisfies Eqn. (2). The
differences to the calculus for CGwCs with generic markers are indicated by
writing the changed phrases in a different text style.

Definition 7 (Calculus for Purified CGwCs with Variables).
The calculus for purified CGwCs with variables over the alphabet A := (G, C,R)

consists of the following rules:

– erasure: In positive contexts, any directly enclosed edge, isolated vertex, and
closed subgraph may be erased.

– insertion: In negative contexts, any directly enclosed edge, isolated vertex,
and closed subgraph whose variable vertices are labeled with fresh variables
may be inserted.

– iteration: Let G0 := (V0, E0, ν0,>0, Cut0, area0, κ0, ρ0) be a (not necessar-
ily closed) subgraph of G and let c ≤ cut(G0) be a context such that c /∈ Cut0.
Then a copy of G0, where each vertex v = P : α is replaced by v = P : α′

for a fresh variable α′, may be inserted into c. For every vertex v ∈ V ∗
0 with

cut(v) = cut(G0), an identity-link from v to its copy may be inserted.
– deiteration: If G0 is a subgraph of G which could have been inserted by rule

of iteration, then it may be erased.
– double cuts: Double cuts (two cuts c1, c2 with area(c1) = {c2}) may be

inserted or erased.
– generalization: For evenly enclosed vertices and edges, their concept names

resp. their relation names may be generalized. Moreover, for evenly enclosed
vertices which carry an object name as reference, the object name may be
replaced by a fresh variable α.

– specialization: For oddly enclosed vertices and edges, their concept names
resp. their relation names may be specialized. Moreover, for oddly enclosed
vertices which carry a variable as reference, the variable may be replaced by
an object name.

– exchanging references: Let e ∈ Eid be an identity link with ρ(e
∣∣
1
) = g1,

ρ(e
∣∣
2
) = g2, g1, g2 ∈ G ∪ Var and cut(e) = cut(e

∣∣
1
) = cut(e

∣∣
2
). Then the

references of v1 and v2 may be exchanged, i.e., the following may be done:
We can set ρ(e

∣∣
1
) = g2 and ρ(e

∣∣
2
) = g1.2

2 Note that we allow to exchange two variable references as well, but applying the rule
this way to a purified CGwCs with variables yields simply an equivalent graph, and
equivalent graphs are already considered to be identical. Nonetheless, in the next
section we will use this rule for not necessarily purified CGwCs with variables as
well, and for these graphs, the rule has indeed an effect.



– merging two vertices: Let e ∈ Eid be an identity link with ν(e) = (v1, v2)
such that
• cut(v1) ≥ cut(e) = cut(v2),
• ρ(v1) = ρ(v2) ∈ G or ρ(v1), ρ(v2) ∈ Var, and
• κ(v2) = >

hold. Then v1 may be merged into v2, i.e., v1 and e are erased and, for every
edge e ∈ E, e

∣∣
i
= v1 is replaced by e

∣∣
i
= v2.

– splitting a vertex: Let g ∈ G ∪ Var. Let v = P : g be a vertex in the
context c0 and incident with relation edges R1, . . . , Rn, placed in contexts
c1, . . . , cn, respectively. Let c be a context such that c1, . . . , cn ≤ c ≤ c0. Then
the following may be done: In c, a new vertex v′ = > : g′ , where g′ = g, if
g ∈ G, or g′ is a fresh variable, if g ∈ Var, and a new identity-link between v
and v′ is inserted. On R1, . . . , Rn, arbitrary occurrences of v are substituted
by v′.

– >-erasure: For g ∈ G ∪ Var, an isolated vertex > : g may be erased from
arbitrary contexts.

– >-insertion: For g ∈ G ∪Var, an isolated vertex > : g may be inserted in
arbitrary contexts. Particularly, if g ∈ Var, g has to be a fresh variable in
order to obtain a well-formed purified CGwC with variables.

– identity-erasure: Let g ∈ G, let v1 = P1 : g and v2 = P2 : g be two
vertices. Then any identity-link between v1 and v2 may be erased.

– identity-insertion: Let g ∈ G, let v1 = P1 : g , v2 = P2 : g be two vertices
in contexts c1, c2, resp. and let c ≤ c1, c2 be a context. Then an identity-link
between v1 and v2 may be inserted into c.

4 CGwCs with Variables

In this section, we will extend the calculus ` pv of Sec. 3 to the system of (not
necessarily purified) CGwCs with variables.

The calculus of Sec. 3 so far is defined only for purified CGwCs with variables
(particularly, it can only be applied to these graphs). Moreover, we had to design
the rules of ` pv to make sure that an application of any rule to a purified CGwCs
with variables yields a purified CGwCs with variables again. For example, the
rule ‘insertion’ of ` pv can only be applied to a purified CGwC with variables,
and we only allowed to insert subgraphs where all variable boxes are labeled
with a fresh variable. As we now consider non-purified CGwCs with variables as
well, this is now an unnecessary restriction.

It is reasonable not to add more rules to ` pv in order to obtain a sound and
complete calculus `v for CGwCs with variables. Instead, we will extend each rule
of ` pv to rule for CGwCs with variables, and if the rule had some restrictions
which were needed to ensure that an application of the rule yields a purified
CGwC with variables, these restrictions are now dismissed. On the other hand,
when we extend a rule ` pv

r to a rule ` v
r for not necessarily purified CGwCs with

variables, we have to take care that when ` v
r is applied, no scopes of variables

are allowed to change. We exemplify this necessity with two examples.



We start with an example of extending the rule ‘>-insertion’. Consider the
following valid graph with the meaning ‘every person is the child of a person’.

child_of Person: yPerson: x

For CGwCs with variables, it is self-suggesting that we now allow to insert >-
boxes into arbitrary contexts. Let us first consider an insertion of >-boxes such
that no scopes of variables are changed, for example like this:

child_of Person: yPerson: x Person: x Person: y

This is indeed a valid derivation. But if we insert a new box > : x which changes
the scope of the variable x, like in the next graph,

child_of Person: yPerson: y Person: x

we obtain an invalid graph with the meaning ‘every person is the child of every
person’. Thus, for CGwCs with variables, we can insert a new box > : α with
α ∈ Var only if this insertion does not change the scope of α.

In the rule ‘generalization’, we will not only allow to generalize an object
name to a fresh variable, but we will allow to generalize a variable to a fresh
variable as well. Again, we have to take care that no scope of a variable changes
when this rule is applied. To see this, consider the following valid graph with
the meaning ‘there exists a married person, and if this person is a father, it is a
male adult’ (we assume that only adults are allowed to marry).

is_married malePerson: x xFather: Adult: x

We can generalize the variable x of the innermost concept box to the fresh
variable z. Then we obtain the following graph:

is_married malePerson: x xFather: Adult: z

The meaning of this graph is ‘there exists a married person, and if this person is
a father, there exists a is a male adult’. Obviously, this derivation is valid. But if
we generalize the variable x of the outermost concept box to the fresh variable
z, we obtain the following graph where the scope of x has changed:

is_married malePerson: z xFather: Adult: x



The meaning of this graph is ‘there exists a married person, and every father is
a male adult’, which is, as there are fathers who are still a minor, not true.

The calculus ` pv had been designed to make sure that an application of any
rule to a purified CGwCs with variables yields a purified CGwCs with variables
again. This restriction can be dismissed now, but recall that we only consider
CGwCs with variables which have dominating variable boxes. This has to be
taken into account when the rules of ` v are introduced. To summarize: If we
reformulate a rule `pvr to a rule `v

r , we have to make sure that no scope of any
variable is changed, and applying a rule yields always a CGwC with variables
having dominating variable boxes.

Now we are prepared to provide the calculus for CGwCs with variables. Most
of the rules are direct extensions of the rules for purified CGwCs with variables,
but there are two significant changes. First of all, in the generalization rule, we
allow to replace the variable of a variable vertex by a fresh variable. Secondly,
in the rule ’splitting a vertex’, if the reference of the vertex is a variable, we
now allow that the new copy is labeled with the same variable as well. The
specialization rule and the rule ‘merging two vertices’ are extended in a way
that they allows the reverse transformation in oddly enclosed contexts.

Definition 8 (Calculus for CGwCs with Variables).
The calculus for variable-purified CGwCs over the alphabet A := (G, C,R)

consists of the following rules:

– erasure: In positive contexts, any directly enclosed edge, isolated vertex, and
closed subgraph G′, where each variable box of G′ is dominated by a variable
box which does not belong to G′, may be erased.

– insertion: In negative contexts, any directly enclosed edge, isolated vertex,
and closed subgraph G′, where each variable box of G′ is dominated by a
variable box which does not belong to G′, may be inserted.

– iteration: Let G0 := (V0, E0, ν0,>0, Cut0, area0, κ0, ρ0) be a (not necessar-
ily closed) subgraph of G and let c ≤ cut(G0) be a context such that c /∈ Cut0.
Then a copy of G0, where each vertex v = P : α is replaced by v = P : α′

for a fresh variable α′, may be inserted into c. For every vertex v ∈ V ∗
0 with

cut(v) = cut(G0), an identity-link from v to its copy may be inserted.
– deiteration: If G0 is a subgraph of G which could have been inserted by rule

of iteration, then it may be erased.
– double cuts: Double cuts (two cuts c1, c2 with area(c1) = {c2}) may be

inserted or erased.
– generalization: For evenly enclosed vertices and edges, their concept names

resp. their relation names may be generalized. Moreover, for each evenly
enclosed vertex, its reference may be replaced by a fresh variable α.

– specialization: For vertices v and edges e in the area of an odd cut c, their
concept names resp. their relation names may be specialized. Moreover, if
v is a singular variable vertex, this variable may be replaced by an object
name or another variable α, provided we have scope(α) ≥ c in G.



– exchanging references: Let e ∈ Eid be an identity link with ρ(e
∣∣
1
) = g1,

ρ(e
∣∣
2
) = g2, g1, g2 ∈ G ∪ Var and cut(e) = cut(e

∣∣
1
) = cut(e

∣∣
2
). Then the

references of v1 and v2 may be exchanged, i.e., the following may be done:
We can set ρ(e

∣∣
1
) = g2 and ρ(e

∣∣
2
) = g1.3

– merging two vertices: Let e ∈ Eid be an identity link with ν(e) = (v1, v2)
such that
• cut(v1) ≥ cut(e) = cut(v2),
• ρ(v1) = ρ(v2) ∈ G, or ρ(v1), ρ(v2) ∈ Var such that ρ(v1) = ρ(v2) or v2 is

a singular variable vertex, and
• κ(v2) = >

hold. Then v1 may be merged into v2, i.e., v1 and e are erased and, for every
edge e ∈ E, e

∣∣
i
= v1 is replaced by e

∣∣
i
= v2.

– splitting a vertex: Let g ∈ G ∪ Var. Let v = P : g be a vertex in the
context c0 and incident with relation edges R1, . . . , Rn, placed in contexts
c1, . . . , cn, respectively. Let c be a context such that c1, . . . , cn ≤ c ≤ c0. Then
the following may be done: In c, a new vertex v′ = > : g′ , where g′ = g, if
g ∈ G, and g′ = g or g′ is a fresh variable, if g ∈ Var, and a new identity-link
between v and v′ is inserted. On R1, . . . , Rn, arbitrary occurrences of v are
substituted by v′.

– >-erasure: For g ∈ G, an isolated vertex > : g may be erased from ar-

bitrary contexts. For α ∈ Var, an dominated isolated vertex > : α may be
erased from arbitrary contexts.

– >-insertion: Let c be context. For g ∈ G ∪ Var, an isolated vertex > : g

may be inserted into area(c). For α ∈ Var with scope(α) ≥ c, an isolated
vertex > : α may be inserted into area(c).

– identity-erasure: Let g ∈ G ∪ Var, let v1 = P1 : g and v2 = P2 : g be
two vertices. Then any identity-link between v1 and v2 may be erased.

– identity-insertion: Let g ∈ G ∪ Var, let v1 = P1 : g , v2 = P2 : g be two
vertices in contexts c1, c2, resp. and let c ≤ c1, c2 be a context. Then an
identity-link between v1 and v2 may be inserted into c.

in contrast to purified CGwCs with variables, as we extended the class of well-
formed graphs, the soundness of these rules is not immediately clear. Nonethe-
less, to each rule of the calculus for CGwCs with variables corresponds a rule
for CGwCs with generic markers. For each rule of the calculus for CGwCs with
generic markers, a soundness-proof is provided in [3]. The underlying ideas for
the rules are in both systems identical, and a closer observation of the proofs of
[3] shows that they can be rewritten for the system of CGwCs with variables.
Thus, the following lemma is given without a proof.

Lemma 1 (Soundness of ` v). The rules of ` v are sound, i.e., for two CGwCs
with variables G v

a ,G v
b , we have G v

a ` v G v
b =⇒ G v

a |= G v
b .

3 Note that we allow to exchange two variable references as well, which has now, in
contrast to purified CGwCs with variables has an effect.



Now we have to show that the rules of `v are complete. We start with a
lemma where we show that each CGwCs with variables can be transformed to
a purified CGwCs with variables, and vice versa, with the rules of `v.

Lemma 2. For each CGwC with variables G v exists an syntactically equivalent
purified CGwC with variables G pv, i.e., we have G v `v G pv and G pv `v G v.

Proof: We will transform G v into a purified CGwC
with variables G pv. The procedure of the proof shall
be exemplified with the graph on the right.

P:x1 Q:x1

For each variable vertex v, we do the following: First,
v is split such that the copy v′ of v is labeled with
a fresh variable, and all occurrences of v on an edge
are replaced by v′. Then, the references of v and v′

are exchanged.
After this, each variable box which is not a singular
variable box is labeled with the concept name >.

x: 1 : x1

P:x2 Q:x3

Then, for each variable α, we choose an dominating
variable box vα insert an identity-link between vα

and all remaining vertices labeled with α. x: 1 : x1

P:x2 Q:x3

Finally, for each variable α, each variable box w 6= vα

labeled with α is merged into vα.
x: 1

P:x2

Q:x3

The resulting graph G pv is purified. As each step in the proof can be carried
out in both directions, it is provably equivalent to G v, thus we are done. 2

Each rule `v
r of `v is an extension of the rule ` pv

r . Thus, `v is a complete
calculus for purified CGwCs. Together with the last lemma, we immediately
obtain the completeness of `v, i.e., we get:

Corollary 1 (Completeness of ` v). The rules of ` v are complete, i.e., for
two CGwCs with variables Ga,Gb, we have Ga |= Gb =⇒ Ga ` v Gb.

5 Conclusion

In this paper, we investigated how the results of [3] for CGwCs with generic
markers can be transferred to CGwCs with variables. At a first glance, the dif-
ference between these two systems is a minor syntactical difference. But a closer
observation shows that one has to take care of several technical details, mostly
in the formalization of the transformation rules for CGwCs with variables. Par-
ticularly, we had to take care that an application of a transformation rule to a



CGwCs yields a well-formed graph again, and we had to ensure that no applica-
tion of an transformation rule changes the scope of a variable. These restrictions
result in transformation rules CGwCs with variables which are technically more
complex than their counterparts for CGwCs with generic markers.

This shows on the one hand that it is necessary to investigate CGwCs with
variables on its own. On the other hand, this work shows that one main goal of
conceptual graphs, namely that humans can better handle them than any sym-
bolic notation for logic, is better achieved if generic markers instead of variables
are used for existential quantification. For this reason, this conclusion advocates
the use of generic markers.
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6 Appendix: The Calculi for Both Systems

In this appendix, a short overview on the handling of variables in for the calculi
` pv for purified CGwCs with variables and `v for CGwCs with variables is
provided.
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