
An Embedding of Existential Graphs intoConept Graphs with NegationsFrithjof DauTehnishe Universit�at Darmstadt, Fahbereih MathematikShlo�gartenstr. 7, D-64289 Darmstadt, dau�mathematik.tu-darmstadt.deAbstrat. Coneptual graphs are based on the existential graphs ofPeire and the semanti networks of AI (see [So92℄). Existential graphsare omposed of three syntatial elements: lines of identity, prediatenames and uts (whih are used for negation). In [Da00℄ and [Da01℄we introdued the uts of existential graphs as new syntatial elementto onept graphs. The resulting onept graphs with uts have at leastthe expressivity of existential graphs. In this artile, we present someideas how existential graphs an be translated to onept graphs withuts, or, in other words, how existential graphs an be regarded as speialonept graphs with uts. In order to do this, we provide several examplesof existential graphs. We disuss the meanings of these examples andhow they should be translated to onept graphs with uts. After thedisussion, we attempt to provide a formal de�nition of existential graphsand a formal de�nition of their translation to onept graphs with uts.1 IntrodutionPeire invented the Existential Graphs (EGs) in 1896. He alled them his `hefd'ouevre' and said they were `the lukiest �nd of my areer ' (see [So97℄). Peirealso invented the algebrai notation prediate alulus, but he preferred the di-agrammati style of logi. Although the algebrai style of logi beame widelyaepted, EGs are still relevant. They are used in teahing, in automate reason-ing and theorem proving (see for example the works of Hammer and Shin, andJohn Stewarts PhD-Thesis on theorem proving with EGs). And what is mostimportant for this work: Coneptual graphs are based on EGs. But a solid math-ematial foundation of EGs is still missing in literature. In this work we providean approah of a mathematial foundation of EGs whih s based on oneptgraphs.In [So97℄ Sowa says `Coneptual graphs (CGs) are an extension of existentialgraphs with features adopted from linguistis and AI.' The term `extension'should not be understood syntatially: Sowa adopted the ideas of existentialgraphs (EGs), but CGs have a di�erent syntax. But `extension' an be under-stood semantially: The deisive idea is that everything whih an be expressedwith EGs an be expressed with CGs, too. A ruial part of this idea is that theuts of EGs an be expressed by negation ontexts in oneptual graphs. But



ontexts in CGs are handled as metalevel operators, but we onsider negation asa logial, not a metalevel operator. So we removed the negation ontexts fromCGs. Instead of them, we have introdued the uts of EGs as new syntatialelement to CGs (see [Da00℄, [Da01℄, [Da02℄). Furthermore the oreferene linksare replaed by so-alled identity links, i.e. edges in the usual sense whih are la-belled by the identity relation id. The resulting graphs are alled onept graphswith uts.We want to stress that Peire distinguished between diagrams of EGs, whih healled replias of EGs, and the graphs themselves. He said: `A graph is a proposi-tional expression in the System of Existential Graphs of any possible state of theuniverse. It is a Symbol, and, as suh, general, is aordingly to be distinguishedfrom a graph-replia. ' So a replia of an EG is a diagrammati representationof an underlying (abstrat) EG. Please note that we have the same situationfor onept graphs: They an be represented diagrammatially, but they are nodiagrams.Now the idea that everything whih an be expressed with EGs an be expressedwith CGs an be re�ned in the following way: We want to �nd a mapping �1whih maps an replia of an EG E to a onept graphs with uts G := �(E)whih has the same semantial meaning as E. The mapping � will map lines ofidentity to onept boxes >:� and identity links, prediate spots to edges anduts to uts.In this work we want to show how the mapping � should work. In order to dothis, we provide several examples of EGs by providing their diagrams. We disussthe meanings of these examples and whih diÆulties we have to ope with whenwe want to translate them to onept graphs with uts. After this disussion,we attempt to provide a formal de�nition of replias of EGs as diagrams in theeulidean spae. Afterwords we will provide a formal de�nition of the mapping� whih maps the diagrams to speial onept graphs with uts. These oneptgraphs with uts an be onsidered to be the underlying EGs of the replias.This approah strengthens the mathematial foundations of EGs as well as ofEGs, and it shows preisely why and where CGs are an extension of EGs.Before we start the disussion, we want to give a short overview over the mainsoures in literature we are referring to. Peire himself did not write a `standardtextbook' on EGs, and, as Sowa says in his omments in [PS09℄, `reading Peire'smanusripts an be both frustrating and rewarding.' Roberts worked throughPeire's manusripts, and his PhD-thesis `The Existential Graphs of CharlesS. Peire' is a benhmark in the researh on EGs and the best introdutionin EGs we know. Burh is another expert on the work of Peire. In his book`A Peirean Redution Theses' ([Bu91℄) he worked out the `Peirean AlgebraiLogi' whih, as he says, `is designed spei�ally to aord as losely as possiblewith the system of Existential Graphs that Peire developed in the late 1890s.'1 We have hosen the letter � for two reasons: First, we have deided to use a apitalgreek letter following the well known mapping � : CG ! FOL (and the mapping	 : FOL ! CG whih some authors use, too). Seondly, the form of `�' is similarto `E', the �rst letter of `Existential Graphs'.2



In order to understand the graphial representations of EGs, hapter 11 of hisbook is very instrutive. Sowa provides in his manusript `Logi: Graphial andAlgebrai' ([So97℄) a short introdution into EGs. Furthermore he has writtenenlightening omments on MS514, whih Peire wrote in 1909 as a tutorial onEGs. MS514 is also one of two work soures of Peire we use for our analysis ofEGs. The other one is given by his Cambridge letures from 1898 (esp. Leture3: `The Logi of Relatives'). These are the main soures we use in this artile.Of ourse the mentioned authors have written more on EGs, and there are moreauthors whih are experts on EGs (e.g. Hammer and Shin).2 Examples for Existential GraphsIn this setion we provide some examples for EGs and their translation to oneptgraphs with uts.EGs are omposed of three kinds of parts:{ lines of identity, whih are used to denote the existene of objets and theidentity between objets (in this work, we will write `LoI' instead of `line ofidentity' for short){ prediate names, whih are attahed to LoIs and whih are used to denoteattributes of or relations between the objets{ uts, whih are used to denote negation. In his later work, e.g. in [PS09℄,Peire used shaded areas instead of uts. In this work, we use uts to keeponform with the notation we used in [Da00℄, [Da01℄ and [Da02℄. But whenwe adopt an example Peire has given in [PS09℄, we draw them in theiroriginal manner with shaded and unshaded areas instead of uts.1st Example:The �rst EG E1 we want to disuss is a single line of identity, i.e. E1 :=The (naive) meaning of this graph is `something exists', or, perhaps better, `thereis something'.LoIs are so-alled `indivisible graphs'. Although LoIs are indivisible, they beara kind of inner struture. In [PS09℄ Peire writes: `The line of identity an beregarded as a graph omposed of any number of dyads '-is-' or as a single dyad.'He illustrates this view with an example (page 14 in [PS09℄). Aording to this,we an regard E1 in di�erent ways. If we regard E1 as omposed of three dyads,we get the meaning `there is something whih is something whih is somethingwhih is something'. If we regard this LoI as a single dyad, we get the meaning`there is something whih is something'. But note that Peire does not mentionthat a LoI an be regarded as a monad (whih would yield the meaning `thereis something').In his ommentary of this part of [PS09℄, Sowa provides the following example:man|is|is|is|is|will die . He explains its translation to an FOL-formulain the following way: `Eah of the �ve segments of the line of identity orresponds3



to an existentially quanti�ed variable, and eah instane of the dyad {is{ or-responds to an equal sign between two variables.' Hene Sowa adopted Peire'sview on LoIs.Burh shares this understanding as well. In [Bu91℄ he desribes his omprehen-sion of LoIs: `Lines of identity are simply lines that are themselves omposed ofspots of identity (of various adiities) that are diretly joined together.' The spotsof identity orrespond to the existentially quanti�ed objets (the `somethings' inPeire's translations resp. the existentially quanti�ed variables), and their joinsorrespond to the relation `is' resp. the equal sign between two variables.Roberts makes in [Ro73℄ a similar approah. He provides three rules C7, C8and C9 for the reading of LoIs in EGs. The �rst of these rules is: `C7: A heavyline, alled a line of identity, shall be a graph asserting the numerial identityof the individuals denoted by its two extremities.' This rule expresses Peire'sunderstanding that a LoI an be regarded as a single dyad.To summarize: The translation of E1 to an FOL-formula or to a onept graphdepends on the number of dyads `-is-' (or of one monad) it is omposed of. Thisnumber is our hoie. So we have in�nite many di�erent possible translations ofE1, namely the following:one monad one dyad two dyads : : :FOL ? 9x1:9x2:x1 = x2 9x1:9x2:9x3:x1 = x2 ^ x1 = x2 : : :CG :* :*:* :*:* :* : : :Obviously all FOL-formulas are (semantially) equivalent (esp. all formulas areequivalent to 9x:x=x). We will now explain why the same holds for the oneptgraphs as well.In [Da01℄, we provided a sound and omplete alulus for onept graphs withuts. This alulus ontains esp. the rule splitting a vertex. This rule maybe reversed (i.e. the rule is a transformation whih may be performed in bothdiretions). The reverse diretion is namedmerging two verties (see [Da02℄).These rules do the following: 2{ merging two vertiesLet e 2 Eid be an identity link with �(e) = (v1; v2) and ut(v1) � ut(e) =ut(v2). Then v1 may be merged into v2, i.e. v1 and e are erased and, forevery edge e 2 E, e(i) = v1 is replaed by e(i) = v2.{ splitting a vertexLet v = >:� be a vertex in ut 0 and inident with relation edgesR1; : : : ; Rn,plaed in uts 1; : : : ; n, respetively. Let  be a ut suh that 1; : : : ; n � � 0. Then the following may be done: In , a new vertex v0 = >:� anda new identity-link between v and v0 is inserted. On R1; : : : ; Rn, arbitraryinstanes of v are substituted by v0.These two rules allow to insert and erase redundant opies of onept boxes >:� .These rules are for onept graphs with uts what Peire's view that a LoI an2 For a further disussion and examples see [Da01℄ and [Da02℄4



be regarded as a graph omposed of any number of dyads `-is-' is for EGs. Inother words: These rules are exatly the rules whih are needed to see that allthe di�erent possible translations of an EG are semantially equivalent. So weset:De�nition 1. Let � be the smallest equivalene relation suh that the followingholds: If G1 and G2 are two onept graphs with uts and we an derive G2 fromG1 only with the rules splitting a vertex and merging two verties3, then we haveG1�G2. We say that G1 and G2 are �-equivalent.From the disussion so far we an draw the following onlusion: All the possibleorret translations of E1 are �-equivalent. So it appears reasonable that thetranslation of an EG is not a single onept graph, but a whole equivalene lassof �. The mapping � has to yield a single member of this lass.An obvious approah for � is to assign one onept box >:� to eah LoI. Butin Example 10 it will turn out that this approah fails. So we will appeal tounderstand that a LoI is a single dyad whih asserts the identity between thetwo endpoints of the LoI. So we assign a onept box >:� to eah endpoint ofthe LoI and an identity link between them, i.e. we set �(E1) := :*:* .2nd and 3rd Example:In the next two examples we introdue prediates to ourdisussion. We start with an example having a unary pred-iate P whih is attahed to a LoI. The EG is therefore E2 := PIn this example we have one LoI. On one of its end points a prediate name isattahed. In the following, we will denote suh points prediate spots.When we translate EGs to onept graphs, it is obvious that prediate spotsshould be translated to edges, i.e. relations, in onept graphs. We have arguedthat we will translate a LoI to two onept boxes >:� whih are onneted withan identity link. One might think that in the translation of E2 we an drop theonept box >:� whih is the translation of the prediate spot of our EG (i.e.the endpoint of the line of identity where the prediate name P is attahed).This means we would assign onept boxes >:� only to `loose' ends of LoIs.Doing the translation this way, our translation of E2 would be :*P .But the next graph shows that this approah fails: E3 := P QThe translation of E3 must ontain at least one onept box >:� and two unaryedges with the prediate names P and R. But the LoI of E3 has no loose end.Hene it is generally not suÆient to assign onept boxes >:� only to looseends of LoIs.Sowa says in [PS09℄ the following: `In EGs, eah prediate is represented by aharater string [...℄ and eah argument or subjet is represented by a line alleda peg. By itself, a peg 4 represents an existentially quanti�ed variable, and aLoI that onnets two or more pegs orresponds to an equal sign `=' between the3 for tehnial reasons, the rule isomorphism is needed, too.4 The term `hook' instead of `peg' is used by Peire, too.5



orresponding variables.' The ruial onlusion we an draw from this statementis that we have to assign a onept box >:� (whih is the orrespondent of`existentially quanti�ed variable') in onept graphs to eah peg of a prediatespot. Hene we set�(E2) := :* :*P and �(E3) := :* :*P QThese graphs ontain, similar to our �rst example, a number of redundant opiesof >:� . But we have�(E2) � :*P and �(E3) � :*P Q4th Example:Now we onsider a graph in whih we have a linked stru-ture of lines. E4 :=
R

QPThere are di�erent possibilities how this line with several branhes an be seen.Roberts explains a similar example in his book: `We ould onsider the [...℄ linesas a single line of identity with three extremities whih have a point in ommon[...℄. And the totality of all the lines of identity that join one another he (Peire)alled a `ligature'. we prefer the former terminology [...℄'Later on he explains how a branhing LoI should be treated. This is the next ofhis three rules we mentioned in our �rst example. He states: `C8: A branhingline of identity with n number of branhes will be used to express the identity ofthe n individuals denoted by its n extremities.'Sowa shares the understanding that the linked struture an be regarded as asingle LoI. For example, in [So97℄ he says: `In Peire's graphs, a bar or a linkedstruture of bars is alled a line of identity.'Peire's understanding hanges among di�erent manusripts. In his Cambridgeletures of 1898 we �nd the phrase: `Now as long as there is but one suh line ofidentity, whether it branhes or not [...℄.'But in his tutorial [PS09℄ of 1909 he he provides an example whih he explainsas follows:
male

African
human

is a graph instane omposed of instanes of three indivisiblegraphs whih assert `there is a male', `there is somethinghuman' and `there is an Afrian'. The syntati juntion orpoint of teridentity asserts the identity of something denotedby all three.Later on he says: `A line whih is omposed of two or more lines of identityabutting on one another is alled a `ligature'.' So he expliit disriminates be-tween one line of identity and a linked struture of lines of identity whih healls ligature.Our understanding of E4 is the following: E4 has three LoIs. Eah of them hasone endpoint whih is a prediate spot. We onsider the `syntati juntion', the`point of teridentity' as a point whih have all the LoIs in ommon, i.e. the three6



LoIs share a ommon endpoint. Following Burh, we will all points like thisidentity spots. As long as a ligature does not ross a ut (a further disussionon this will follow in Example 8), it makes no semantial di�erene whether weunderstand the ligature in E4 as omposed of three LoIs or as being a single LoIwith three branhes. We prefer the former view due to mere tehnial reasons:With this view it is easier to provide a mathematial de�nition for EGs and toprovide a formal translation of EGs to onept graphs (see next setion).Before we proeed with this example, we re�ne our informal de�nition of predi-ate spots, identity spots and pegs resp. hooks as follows:{ A prediate spot is a point where a prediate name is sribed. We presupposethat in eah prediate spot ends at least one LoI.{ If a prediate spot arries a prediate name with arity n, there will be exatlyn endpoints of LoIs attahed to this prediate point. This n endpoints arealled pegs or hooks.{ An identity spot is an endpoint of a LoI whih is not a prediate spot.Using this terminology, E4 hasthree LoIs (whih yield threeidentity links in our translation)and three prediate spots (whihyield three further edges in ourtranslation). Eah prediate spot �(E4) := :*:*:*

:*

Q

R

P

arries one peg, and we have a further identity spot, hene we will have fouronept boxes >:� in our translation. This yields �(E6).�(E4) ontains again a number of redundant oneptboxes >:� . But like in the last examples, we have auniquely given onept graph whih is equivalent toour translation and whih has a minimal number ofonept boxes >:� . We have �(E4) � :*P

R

Q5th Example:If we use prediates with an arity > 1, the EGs an beread the same way. We start with the following example,having a dyadi prediate T : E5 := TE5 has two LoIs, one prediate spot with two pegs and two identity spots. Hene�(E5) := :*:* :* :*T � :* :*T6th and 7th Example:The following graphs have only one LoI. In E6, its extremities are attahed tothe two pegs of the dyadi prediate T . In E7 they are simply joined.E6 := T and E7 :=The main di�erene between these two examples is the following: In E6, we havetwo pegs to whih we will assign two onept boxes >:� in our translation toonept graphs. In E7, we have only one identity spot, hene we will have onlyone onept box >:� in our translation. So we have7



�(E6) := :* :*
T �

:*

T and �(E7) := :*But it is worth to note that �(E7) is not �-equivalent to >:� !8th Example:Finally we have to introdue uts to our disussion. Westart with a graph in whih a LoI seems to ross a ut. E8 := P RWe �nd the phrase `a line of identity rossing a ut' several times in the bookof Roberts. Sowa shares the understanding that a LoI may ross a ut withRoberts.In his ommentary in [PS09℄ he explains the graph on theright as follows: `[...℄ part of the line of identity is outsidethe negation. When a line of identity rosses one ore morenegations [...℄' phoenixBut in [PS09℄ Peire o�ers a di�erent point of view. In our �rst example, we haveited Peire's de�nition of LoIs. Here is the whole quotation: `Every indivisiblegraph instane must be wholly ontained in a single area. The line of identityan be regarded as a graph omposed of any number of dyads `-is-' or as a singledyad. But it must be wholly in one area. Yet it may abut upon another line ofidentity in another area.' Espeially we an onlude that Peire did not allowLoIs to ross a ut5. To emphasize this, Peire provides the following example,whih he desribes as follows:
man will die

Thus it denies that there is a man that will not die,that is, it asserts that every man (if there be suh ananimal) will die. It ontains two LoIs (the part in theshaded area and the part in the unshaded area).So our interpretation of E8 is the following: E8 ontains two LoIs. In the wordsof Peire, `they abut on one another'. Our understanding is that they have onepoint, an identity spot, in ommon. This identity spot is plaed on the ut.We have to analyze how points on a ut have to be treated. In his PhD-thesis,Roberts ites Peire as follows: `The ut is outside its own lose.' From this, hederives the last rule `C9: Points on a ut shall be onsidered to lie outside thearea of that ut.' We adopt this view and draw from this the following onlusionsfor our translation of E8:In this translation, we assign a onept box >:� to the identity spot on theut, and this box is plaed outside the ut. All the remaining spots of the LoIare plaed inside the ut. So the onept box >:� we assign to the peg of R isplaed inside the ut. The same holds for the identity link between these twoboxes whih we assign to the right LoI: It is plaed inside the ut, too. Theleft LoI of E8 is easier to understand. The onept box >:� we assign to itsleft endpoint (i.e. the peg of P ) and the identity link we assign to the LoI haveobviously to be plaed outside the ut. So we get5 Burh pointed this out in his talk on ICCS 2001, too.8



�(E8) := :*:* :*P R � :*P R9th Example:A well known example is the following graph (seeFigure 13 on page 53 in [Ro73℄): E9 :=The meaning of this graph is `there are at least two things' or, as Roberts saysin [Ro73℄: `This devise signi�es the non-identity of the individuals denoted bythe extremities of the ligature: `There are two objets suh that no third objet isidential to both'.' In partiular Roberts interprets the graph in the following way:It ontains a ligature whih is omposed of three LoIs, and eah LoI orrespondsto one objet. If we adopt this interpretation for the mapping �, we wouldassign a onept box >:� to eah LoI (instead of assigning onept boxes >:�to endpoints of LoIs). But the next example shows that this approah may fail.So our understanding of E9 is the following:E9 ontains a ligature whih is omposed of three LoIs. The LoI in the middlehas with eah of the other two LoIs an identity spot in ommon, and these twospots are plaed on the ut. Hene the onept boxes we assign to these spotsare plaed outside the ut. As the remaining identity spots of the LoI in themiddle are plaed inside the ut, the identity link whih we assign to this LoIis plaed inside the ut, too. The onept boxes we assign to the extremities ofthe ligature and the identity links we assign to the left and right LoI have to beplaed outside the ut. This yields altogether�(E9) := :*:* :* :* � :* :*10th Example:This example is losely related to the last one. But E10ontains only one LoI (whih orresponds the the LoI inthe middle of E9). Both endpoints are plaed on the ut. E10 :=Like in the last example, the onept boxes>:� we assign to the endpoints are plaedoutside the ut, and the identity link betweenthese boxes is plaed inside the ut. Hene thetranslation of this EG graph is: �(E10) := :* :*So E9 and E10 are semantially equivalent. This is not surprising:Roberts provides in [Ro73℄ two examples (Figure 3 and 4 on page54) on whih he explains how LoIs whih `terminate on a ut '(Roberts) have to be treated. Aording to this, E10 is equivalentto the graph on the right, whih is another way of drawing E9.But we want to stress that eah onept graph whih has the same meaning asE9 or E10 needs at least two onept boxes >:� ! So E10 annot be translated toa onept graph with only one onept box, although E10 has only one LoI. E10is the ruial example why we assign one onept box >:� to eah extremity ofa LoI, and why we do not assign one onept box >:� to eah LoI itself.9



11th Example:Now we onsider the EG on the right. Again we have onlyone LoI, but the endpoints of this LoI are idential. E11 :=Contrary to the last example, we have one identityspot instead of two. So our translation of E11 ontainsonly one onept box >:� . This yields the transla-tion on the right. �(E11) := :*12th Example:In the following we want to analyze someexamples in whih LoIs seem to `touh' aut. In [PS09℄ Peire demonstrates the in-ferene of a syllogism with EGs. In thisdemonstration he provides the two EGs onthe right (numbering taken from Peire): ��������
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Fig. 12 Fig. 13He derives the EG of Fig. 13 with the insertion rule from the EG of Fig. 12. Thesegraphs show that Peire had indeed the onept of `lines of identity touhing aut' and how he treats them.The �rst example we want to onsider is E12. The spotwhere the LoI in E12 touhes the ut is in our view a pointwhih is plaed on the ut and has therefore be onsideredoutside the ut. E12 := R

SAording to this, thegraph on the right hasthe same meaning asE12: S
R

But this graph has adi�erent meaning thanE12: S
RIf we assume that E12 has only one LoI whih touhes theut in its middle, we would (aording to our translationrules given so far) translate this graph to the graph on theright. This onept graph is not an appropriate translationof E12. :*

:* S

RSo if we insist on the interpretation that this graph has one LoI, we would havetake into aount that there are ases where we have to assign onept boxes>:� to identity spots whih are loated in the middle of a LoI. This would makea formal translation of EGs to onept graphs with uts more ompliated.For this reason, it is better to understand the rule `lines of identity do not rossuts' stritly in the following sense: We only allow endpoints of LoIs to be plaeddiretly on a ut.Aording to this view,E12 has two LoIs whihhave an identity spot inommon, and this identityspot is plaed on the ut.This yields �(E12) := :*
:*

:* S

R � :*
S

R

10



13th, 14th and 15th Example:How the touhing LoI of E12 an be seen is elaborated in the next three examples.Eah graph has a ligature with three branhes and a teridentity spot whih,aording to rule C8 of Roberts, expresses the identity of the three attahedLoIs.E13 := P
R

S
, E14 := P

S

R , E15 := P
S

RIt turns out that � maps E13 { E15 to the same �-lass,namely the lass of the graph on the right. In partiularE13 { E15 have the same meaning. :*P
S

R16th Example:Now we give an example of a graph in whih a LoIseems to touh from the outside. We onsider thefollowing EG: E16 := P

Q
RE16 has three LoIs. Two of them have an identity spot on the ut in ommon.So E16 has three prediate spots, eah of them has one peg, and two identityspots. So we have�(E16) := :* :* :*

:*

:*

R
Q

P � :*

:*

QP

R17th, 18th and 19th Example:Like for E12 we want to elaborate how the touhing LoI of E16 an be treated.E17 := R
P

Q
, E18 := P

R
Q

, E19 := R
P

QCompare E18 with the EG of Fig. 13 in [PS09℄. In E18 the teridentity spot isplaed on the ut and an therefore, aording to rule C9, be onsidered tolie outside the ut. So it has to be expeted that E17 and E18 have the samemeaning. We have indeed�(E17) := :*

:*

:*

:* :*

P

Q

R � :* :*

:*

:*

R

P

Q

=: �(E18)
Note that both translations are equivalent to :*

P

Q
RBut we have 11



�(E19) :=
:*

:* :*

:*
:* :*

P

Q
R � :*

:*

:*

P

Q

RHere are two aspets remarkable.We want to point out that E19 has a di�erent meaning than E17 and E18. Morepreisely: E17 and E18 entail E19, but not vie versa.E19 is furthermore our �rst example where the lass of all onept graphs whihare �-equivalent to �(E19) does notontain a uniquely given element with aminimal number of onept boxes >:� .For E19 we have two minimal graphswhih are not isomorphi, namely :*

:*

P

Q

R , :*

:*

P

Q R20th Example: Finally we want to remark that�0B�Q

R

S

P
1CA := :*

:*

:*

:*

:* S

RP

Q
� :*

S

R

Q

P3 De�nitionsIn this setion we attempt to provide a formal de�nition of EGs and a formalde�nition of �. For the formal de�nition of onept graphs with uts see [Da01℄or [Da02℄.We want to note that Peire's understanding of EGs depends on his understand-ing of the ontinuum, and this understanding is very di�erent from the set R.For this reason we needed to disuss the semantis of several `borderases' ofEGs (for example: touhing LoIs). Nevertheless we provide a mathematizationof EGs as a struture of lines and urves in R2 beause R2 is the standard math-ematization of the eulidean plane. So `formal replias of EG' an be understoodto be de�ned as losely as possible to Peire's replias of EGs in ontemporarymathematis.De�nition 2. Let R := (Ri)i2N be a family of �nite sets Ri whose elementsare alled relation names. The elements of Ri have the arity i.A formal replia of an existential graph over R is a struture(L; (�l)l2L;>; Cut; (�)2Cut; P; (�p)p2P ) where{ L, Cut, P are disjoint �nite sets whih are alled lines of identity, uts andprediate spots, resp.,{ > is a single element, the sheet of assertion,{ eah �l, l 2 L is a di�erentiable funtion �l : [0; 1℄ ! R2 suh that forx; y 2 [0; 1℄ with �l(x) = �l(y) we have x = y or fx; yg = f0; 1g12



{ eah �,  2 Cut is a di�erentiable and injetive funtion � : S1 ! R2 ,where S1 is the irle in the eulidean plane with radius 1 and enter ~0.{ eah �p is a struture (Rp; ~xp; (lp;i; xp;i)i=1;:::;k) with Rp 2 Rk, ~xp 2 R2 andlp;i 2 L; xp;i 2 f0; 1g for i = 1; : : : ; k (and we set k := arity(p) := arity(Rp))suh that the following onditions hold:{ Intersetion onditionsLet �m(x) = �n(y) for m;n 2 L [ Cut. Then we have� fm;ng \ L 6= ; (i.e. uts do not interset)� m 2 L; n 2 Cut =) x 2 f0; 1g and m 2 Cut; n 2 L =) y 2 f0; 1gWe further suppose that f((m;x); (n; y)) j �m(x) = �n(y);m; n 2 L[Cutg is�nite.{ Prediate Spots onditions� For eah prediate spot �p := (Rp; ~xp; (lp;i; xp;i)i=1;:::;arity(p)) we have� �lp;i(xp;i) = ~xp for i = 1; : : : ; arity(p)� If �l(x) = ~xp with l 2 L and x 2 [0; 1℄, then (l; x) 2 f(lp;i; xp;i) ji = 1; : : : ; arity(p)g� i 6= j implies (lp;i; xp;i) 6= (lp;j ; xp;j)� If we have two prediate spots p 6= q, then we have ~xp 6= ~xq� For eah prediate spot p there is no ut  2 Cut with ~xp 2 �[S1℄Before we de�ne �, we �rst need some auxiliary de�nitions. For this let E :=(L; (�l)l2L;>; Cut; (�)2Cut; P; (�p)p2P ) be an EG.Let  2 C be a ut. The Jordan Curve Theorem yields that � partitions theplane into two disjoint onneted omponents, one of whih is bounded and onenot bounded. We denote the bounded omponent with in() and the unboundedomponent with out(), and we assume that the ut itself belongs to out() (i.e.�[S1℄ � out()). For the sheet of assertion we set in(>) := R2 and out(>) := ;.Cuts may ontain eah other (see for example Fig. 12 and 13 in [PS09℄). Thisindues anonially an order � on Cut [ f>g, whih now an be de�ned asfollows: for ; d 2 Cut [ f>g we set  < d :() �[S1℄ � in(d).Note that for  2 Cut[ f>g, in() is the set of all points of the plane whih areenlosed by , even if they are deeper nested inside other uts. The points of in()whih are not deeper nested inside other uts are said to by diretly enlosed.The set of all diretly enlosed points is the area of a ut. So for  2 Cut [ f>gwe set areaE() := in()nSd< in(d).R2 is the disjoint union of all sets areaE(). So we an de�ne a mapping utE :R2 ! Cut [ f>g with ~x 2 areaE(utE(~x)) for eah ~x 2 R2 .Finally we set Hook := f( ~xp; i) j p 2 P ^1 � i � arity(p)g, PrSpot := f ~xp 2 R2 jp 2 Pg and IdSpot := f~x 2 R2 j 9l 2 L:9x 2 f0; 1g:�l(x) = ~xgnPrSpot.De�nition 3. Let E := (L; (�l)l2L;>; Cut; (�)2Cut; P; (�p)p2P ) be a formalinstane of an existential graph. Then let �(E) := (V;E; �;>; Cut; area; �; �) bethe following onept graph with uts:{ V := IdSpot :[ Hook and E := P :[ L ,13



{ � is de�ned as follows:� For p 2 P we set �(p) := (( ~xp; 1); : : : ; ( ~xp; arity(p))� For l 2 L we set �(l) := (�l;0; �l;0) with�l;x := � ~x if �l(x) 2 IdSpot(~x; i) if there is a p 2 P with lp;i = l and xp;i = x ;{ For  2 Cut [ f>g we setarea() := fd 2 Cut j �d[S1℄ � areaEG()g :[ f~x 2 IDSpot j utE(~x) = g:[ f(~x; i) 2 Hook j utE(~x) = g :[ fl 2 L j utE(�l( 12 )) = g ;{ �(v) := > for v 2 V , �(p) := Rp for p 2 P , �(l) := id for l 2 L, and{ �(v) := > for all v 2 V .Referenes[Bu91℄ R. W. Burh: A Peirean Redution Theses: The Foundations of Topolog-ial Logi. Texas Teh University Press, 1991.[Da00℄ F. Dau: Negations in Simple Conept Graphs, in: B. Ganter, G. W. Mineau(Eds.): Coneptual Strutures: Logial, Linguisti, and Computational Is-sues. LNAI 1867, Springer Verlag, Berlin{New York 2000, 263{276.[Da01℄ F. Dau: Conept Graphs and Prediate Logi, in: H. S. Delugah,G. Stumme (Eds.): Coneptual Strutures: Boradening the Base. LNAI2120, Springer Verlag, Berlin{New York 2001, 72{86.[Da02℄ F. Dau, Negations in Conept Graphs. PhD-Thesis. To appear.Draft on http://www.tu-darmstadt.de/mathematik/�dau/[Ha95℄ E. M. Hammer, Logi and Visual Information. CSLI Publiations, Stanford,California, 1995.[Ha98℄ E. M. Hammer, Semantis for Existential Graphs. Journal PhilosohpialLogi, Vol. 27, 1998, 489{503.[Pe98℄ C. S. Peire: Reasoning and the Logi of Things. The Cambridge Confer-enes Letures of 1898. Ed. by K. L. Kremer, Harvard Univ. Press, Cam-bridge 1992.[PS09℄ C. S. Peire, J. F. Sowa: Existential Graphs: MS 514 by Charles SandersPeire with ommentary by John F. Sowahttp://users.bestweb.net/�sowa/peire/ms514.htm[Ro73℄ D. D. Roberts: The Existential Graphs of Charles S. Peire. Mouton, TheHague, Paris, 1973.[Ro92℄ D. D. Roberts: The Existential Graphs. Computers Math. Appli., Vol. 23,No. 6{9, 1992, 639{63.[Sh99℄ S. Shin: Reonstituting Beta Graphs into an EÆaious System. Journalof Logi, Language and Information, Vol. 8, No. 3, July 1999.[So84℄ J. F. Sowa: Coneptual Strutures: Information Proessing in Mind andMahine. The System Programming Series. Adison-Wesley, Reading 1984.[So92℄ J. F. Sowa: Coneptual Graphs Summary, in: T. E. Nagle, J. A. Nagle,L. L. Gerholz, P. W. Eklund (Eds.): Coneptual Strutures: urrent re-searh and pratie, Ellis Horwood, 1992, 3{51.[So97℄ J. F. Sowa: Logi: Graphial and Algebrai, Manuskript, Croton-on-Hudson 1997.[So00℄ J. F. Sowa: Knowledge Representation: Logial, Philosophial, and Com-putational Foundations. Brooks Cole Publishing Co., Pai� Grove, CA,2000. 14
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