Negations in Simple Concept Graphs

Frithjof Dau

Technische Universitat Darmstadt, Fachbereich Mathematik
Schlofgartenstr. 7, D-64289 Darmstadt, dau@mathematik.tu-darmstadt.de

Abstract. The aim of this paper is to mathematically introduce nega-
tion to concept graphs (which are a mathematical modification of concep-
tual graphs) as a well-defined syntactical construct. First off, we discuss
some questions which arise when negations for conceptual graphs are
defined. In our view, a solution for these questions is to express nega-
tions by cuts in the sense of Peirce’s theory of existential graphs. A
set-theoretical semantics for (nonexistential) concept graphs with cuts is
developed in the framework of contextual logic. A modification of Peirce’s
alpha-calculus, which is sound and complete, is presented.

1 Motivation

Conceptual graphs are based on the ezistential graphs of Charles Sanders Peirce.
These graphs consist of lines called lines of identities, predicate names of arbi-
trary arity and ovals around subgraphs which are used to negate the enclosed
subgraph. The following three examples are well known:

CAT— ON—MAT CAT— ON—MAT) CAT MAT

The meanings of these graphs are: ‘a cat is on a mat’, ‘no cat is on any mat’
and ‘there is a cat and there is a a mat such that the cat is not on the mat’.

As Peirce says, " That a proposition is false is a logical statement about it, and
therefore in a logical system deserves special treatment.” ([Pe98]). The graphi-
cal element oval which Peirce used to negate its enclosure has been transferred
to context boxes in conceptual graphs. These boxes are used to express that
some information is valid in specific contexts or situations. Hence, the charac-
ter of negation as logical operator in existental graphs changed to a metalevel
character in conceptual graphs. Of course, in knowledge representation and nat-
ural language, negations are unavoidable. So the feature to express negations is
desirable in concept graphs.

To handle negation in concept graphs, we need to achieve the following aims:
For the mathematical treatment, formation rules for the well-formed formulas
must exist that can express negations, and negation has to be covered by rules
of inference. To do this in the spirit of Peirce, the semantics of negation has
to be intelligible, and the graphical representation of negations must be easily
readable and intuitively understandable (which has been an important goal in
the theory of conceptual graphs from the very beginning, too).

Negations occur in several approaches for conceptual graphs. Why we do not
adopt and mathematizise one of these approaches shall be explained in the rest
of this section.

In order to handle negations, a specific syntactical element of the well-formed
formulas has to be declared to express them. For this purpose, the standard ap-
proach use a context box of type Proposition which is linked to a unary relation
of type neg ([S099]). Sometimes, these special context boxes are abbreviated by
context boxes of type Negation (e.g. [So00]) or by drawing a simple rectangle
with the mathematical negation symbol = ([S099]). Some approaches use these
rectangles without declaring whether the box is a specific syntactical element or
just an abbreviation for context boxes of a specific type (e.g. [We95]). But both
a calculus and a translation of conceptual graphs into other formal languages
(like the translation to first order logic with the @-operator), have to respect the
logical role of negation.

So, if negation is expressed just by special context boxes, any calculus and
any tranlation has to treat these special context boxes differently from all other
context boxes. For example, if negation is expressed by context boxes of type
Negation, a calculus should allow the nested boxes in the following graph to be
erased (and vice versa, to be introduced again):

NEGATION:

NEGATION: [-~ }— 1] ‘

This seems to be not possible in any calculus which does not treat the nega-
tion boxes separately (like the calculus of Prediger ([Pr98b]) or any calculus
which is based on projections).

If negation is expressed with contexts of type Proposition, linked to a unary
relation neg, another difficulty appears. This shall be shown by the following two
conceptual graphs:

PROPOSITION:

[CATF-(o)AAT] g | [CAT —(om{viaT]

The first graph is well known: Its meaning is ‘a cat is on a mat’. In particular,
the graph claims to be true. The meaning of the second graph is, strictly speak-
ing, ‘there exists a proposition, which states that a cat is on a mat’ ([S099]),
and therefore different to the meaning of the first graph. Indeed; in none of the
common calculuses, one graph can be derived from the other one. Hence it is
problematic to express the negation of the first graph by the second graph with
a relation neg.

To summarize: It seems to be difficult to introduce negation as a special
context box. These context boxes have to be treated differently to other boxes
in the calculus and in any translation from conceptual graphs to other formal
languages (like the operator @). This yields the following conclusion: For the
mathematical treatment of negation in concept graphs, in the definition of their
well-formed formulas there should be a specific syntactical element which is used
to express negation.

The next step has to clarify the semantics, i.e. the meaning, of negation.
To prepare this, we will discuss a small example. Consider the true proposition
‘the painter Rembrandt created the painting ‘the nightwatch”, which can be
translated to the following conceptual graph:

PAINTER: Rembrandt H createH PAINTING: the nightwatch

This graph represents not only the information that Rembrandt created ‘the
nightwatch’, but also that Rembrandt is a painter and ‘the nightwatch’ is a paint-
ing. Now, consider the painting ‘a starry night’ instead of ‘the nightwatch’. This
painting was created by van Gogh, so the proposition ‘the painter Rembrandt
did not create the painting ‘the starry night” is true. How can this proposition
be transformed to a conceptual graph? The following graph is a first attempt:

J

PAINTER: Rembrandt H createH PAINTING: the starry night

This graph is not the translation of the former proposition: In the proposition,
only the verb ‘to create’ is negated, but in the graph, the negation box also
encloses the information that Rembrandt is a painter and ‘the starry night’ is a
painting. The information in the concept boxes can fail, too, as can be seen in
the following graph:

J

COMPOSER: van Gogh }—(createH PAINTING: the starry night

This graph is true although van Gogh did create ‘the starry night’. In par-
ticular, this graph should not be read as

The composer Van Gogh did not create the painting ‘a starry night’.

But this understanding is suggested when Sowa in [So00] says, that the meaning
of the graph [Negation: [Cat: Yoyo]l— (On)—[Mat]] is ‘the graph denies that
the cat Yoyo is on a mat’. Now, the goal is to negate only the verb ‘to create’
in the false proposition ‘the painter Rembrandt created the painting ‘the starry
night”. This problem has already been addressed, one approach for its solution
is the following graph:

|PAINTER: Rembrandt | ‘PAINTING: the starry night ‘

| | T:x H createH T x ‘

Fig. 1. CG for ‘the painter Rembrandt did not create the painting ‘a starry night”

Indeed, this graph expresses the proposition ‘the painter Rembrandt did not
create the painting ‘the starry night’. But obviously, the aim of making concep-
tual graphs easily readable and intuitively understandable is not fulfilled.

Expressing identity in conceptual graphs with coreference-links or coreference-
sets leads to another class of difficulties. In particular, the meaning of coreference-
links connected to a concept box within a negation is not straightforward. This
shall be explained next:

In conceptual graphs, coreference-links (which are used to express coreference-
sets ([S099])) are used to express the identity of two entities: " Two concepts that
refer to the same individual are coreferent. [...] To show that they are corefer-
ent, they are connected with a dotted line, called a coreference link.” ([S092]).

Consider the following graph:

Fig. 2. conceptual graph for Jz3y.x#y

According to Sowa ([So00]), the operator @ translates this graph into the first
order logic formula 3z3y—3z(2 =z Az=y), which is equivalent to 3z3y.z # y. In
particular, the three concept boxes cannot refer to the same individual. Note that
& assigns different variables to the generic markers of different concept boxes,
even if they are connected with a coreference-link. These variables are explicitly
set to be equal in the formula, and they are equated inside the negated part of
the formula. But since the links in the graph looks symmetric, it is not clear
to a reader why the equating in the formula is placed inside and not outside of
the negated subformula. This ambiguity can be seen even better in the following
example:

PAINTER: Rembrandt} -] [PAINTER: Van Gogh |

If @ translates this graph to PAINTER(R) A ~(R = VG A PAINTER(V@)),
the resulting formula is true, but if @ translates this graph to PAINTER(R) A
Rembrandt = VG AN =(PAINTER(V@G)) the resulting formula is not true (the
names in the formulas are abbreviated by R and V). Hence, in order to under-
stand the right meaning of this graph, the reader must have in mind the implicit
agreement that equality is always placed in the inner context.

If we accept this meaning of corerence links, the next step is is to make
clear which syntactical element in the well-formed formulas is used for them,
and how they are handled by a calculus. In the abstract syntax of conceptual
graphs ([S099]), coreference-links are generalized to coreference-sets. For exam-
ple, Figure 2 has two coreference sets which are represented by coreference-links.
Coreference-sets are sufficient to handle coreference in conceptual graphs with
negations. But still rules are needed that treat these sets in a sound and com-
plete way (for example, there have to be rules which allow a link to be drawn or
erased from a concept box to itself). Some calculuses lack rules like this.

To summarize again: Introducing coreference sets to express identity may
lead to misunderstandings of their meaning and to gaps in their syntactical
implementation.

To cope with all the mentioned problems, we suggest the following: First,
negations should be introduced as a new syntactical element, namely the ovals
of Peirce, which can be drawn around arbitrary parts of a conceptual graph. To
distinguish these ovals from the ovals which are drawn around relation names,
we propose drawing them in bold. For example, in

IPAINTER; Rembrandt H createH PAINTING: the starry night ‘
only the relation create has to be negated, and in
‘ COMPOSER: van Gogh H CreateH PAINTING: the starry night ‘

only the concept box | COMPOSER: van Gogh | has to be negated. The result-
ing conceptual graphs are:

|PAINTER: Rembrandt PAINTING: the starry night |
C| COMPOSER: van Gogh 9—(createH PAINTING: the starry night |

Because the present interpretation of coreference-links is not intuitive in some
sense, we suggest to introduce a special binary relation id (as in first order logic).
The advantages of this approach are

1. id can be trated like other relations and
2. the identity can be negated without loss of readability.

In our view this yields a more understandable notion of identity (as understood
in mathematics). For example, the meaning of the graph

T HGE]

Fig. 3. CG with negation ovals for 3z3y.z#y

is ‘there exist at least two things’. Thus, it has the same meaning as the graph
in Figure 2, but is much simpler. Furthermore, it shows that id is a proper
syntactical extension and not a direct mathematization of coreference links.

Since the syntactical elements which allow negations and identity are ex-
tended and in this approach, every conceptual graph with negation boxes and
coreference-links can be translated into a concept graph with negation ovals
and the relation id. Of course, negation boxes (for example, context boxes of
type Negation) are translated to negation ovals. A coreference-link between two
context boxes is translated into a relation id between the boxes such that the
relation node id is placed in the negation oval of the dominated context box. We
will exemplify this with the following: The conceptual graph

is translated to the following conceptual graph with negation ovals and the re-
lation id:

Fig. 4. another CG with negation ovals for 3z3y.z 4y

This graph can be transformed to the graph in Figure 3, which has the same
meaning, but looks much simpler. On the other hand, concept graphs with nega-
tion ovals and the relation id can be translated to graphs with negation boxes
and coreference-links. But because negation ovals need not include subgraphs,
but arbitrary subsets of concept nodes and relations nodes, this translation is
more complicated than the translation in the other direction. For example: Be-
fore the graph in Figure 3 can be translated, it has to be transformed into the
graph in Figure 4.

The approach we present here is closely related to the original ideas of Peirce.
It is easier to mathematize than approaches based on concept boxes of a specific
type. In this paper, our approach shall be elaborated for simple concept graphs
without generic markers, but with negation ovals and the relation id. In partic-
ular, the syntax for these graphs is defined, an extensional semantics for these
graphs is introduced (which is based on power context families), and a sound
and complete calculus is presented. Furthermore, this approach allows to define
mathematically the operator @ on simple concept graphs (which maps graphs
to first order logic formulas) and its inverse operator ¥ (which maps first order
logic formulas to graphs) such that both respect the (syntactical or semantic)
entailment relation on graphs and formulas, respectively. In particular, the ex-
pressiveness of simple graphs and first order logic formulas is the same. This will
be elaborated in a work which is in progress now.

2 Basic Definitions

Simple concept graphs are introduced by Prediger in [Pr98b] as mathematically
defined syntactical constructs. We take into account her approach and extended
it to include the possibily to express negations by using cuts and the possibility
to express identity by using a special binary relation id.

First we have to start with ordered sets of names for objects, names and
relations. These orders represent the conceptual ontology of the domain we con-
sider.

Definition 1. An alphabet of conceptual graphs is a tripel A:= (G,C,R) such
that

— G is a finite set whose elements are called object names

— (C,<c¢) is a finite ordered set with a greatest element T whose elements are
called concept names

— (R, <g) is a union of finite ordered sets (Ri,<w,), k = 1,...,n (for an
n € N with n > 1) whose elements are called relation names. Let id € R.

Now we can define the underlying structures of concept graphs with cuts.
This definition extends the definition of directed multi-hypergraphs given in
[Pr98b] by cuts, so that negations can be expressed.

Definition 2. A directed multi-hypergraph with cuts (of type n) is a structure
(V. E,v,Cut,area) such that

— V and E are finite sets whose elements are called vertices and edges, respec-
tively,
v:E—Jp_, V¥ (for an € N,n > 1) is a mapping,

— Cut is a finite set whose elements are called cuts and

— area : Cut = P(V U E U Cut) is a mapping such that ¢ ¢ area(c) for each
¢ € Cut and, for two cuts c1,co with ¢1 # ¢, exactly one of the following
conditions holds:

i) {c1} Uarea(cr) C area(cs),

ii) {e2} Uarea(cs) C area(cy),
iii) ({e1} Uarea(er)) N ({e2} Uarea(es)) = 0.

For an edge e € E withv(e) = (v1,...,v;) we define |e| := k and u(e)‘i = ;.
For each v € V, let E, := {e € E | 3 V(E)‘i = v}, and analogously for each

e € E,let V., :={veV |3 u(e)‘i = v}. If it cannot be misunderstood, we
write F,‘i instead of v(e)]

The notion of cuts and areas is closely related to the ideas of Peirce, as they
are described in the work of Roberts (see [Ro73]). Peirce negated parts of an
existential graph just by drawing an oval around it. This oval (more exactly just
the line which is drawn on the sheet of assertion) is called a cut. In particular, a
cut is not a graph. The space within a cut is called its close or area. So the area
of a cut ¢ contains vertices, edges and other cuts, even if they are deeper nested
inside other cuts, but not the cut ¢ itself. All the edges, vertices and cuts in the
area of ¢ are said to be enclosed by c.

Cuts do not intersect each other by the definition of Peirce. So for two dif-
ferent cuts c1, ¢o, exactly one of the following cases occurs:

— ¢ and its area is entirely enclosed by ¢3,
c2 and its area is entirely enclosed by ¢,
— ¢; and its area and ¢, and its area have nothing in common.

Obvioulsy, these three cases coincide with the three conditions for the map-
ping area in Definition 2. Now, let us first mention some simple properties for
the mapping area which can be shown easily:

— ¢1 # 2 Aarea(er) = area(cs) = area(er) = area(cs) =)
— 0 C area(c1) C area(cy) => ¢1 € area(cs)
— ¢1 € area(cs) = area(cy) C area(cs)

In many cases it makes sense to treat the outermost context, the sheet of
assertion, as an (additional) cut. If we abbreviate the sheet of assertion by T,
we immediately come to the following definition:

Definition 3. If Cut is a set of cuts of a directed multi-hypergraph with cuts and
if area is the appropriate mapping, then let Cut' := Cut U{T} and area(T) :=
VUEUCut.

Tt is easy to see that this extension still satisfies the conditions for the map-
ping area which are given in Definition 2. This means that the properties we
have just shown for Cut hold for Cut?, too.

By ¢1 < ¢ :<=> ¢y € area(cy) a canonical ordering on Cuf,T, which is a tree
with T as greatest element, is defined. This can be verified with the properties
for the mapping area.

Obviously, each edge and vertex is enclosed directly (and not deeper nested)
in a uniquely given cut ¢. For the further work, the notion of a subgraph is needed.
It seems to be evident that a subgraph is enclosed directly in a uniquely given cut
¢, too. The notions of being directly enclosed and subgraph shall become precise
through the following definition:

Definition 4. Let & = (V, E,v,Cut,area) be a directed multi-hypergraph with
cuts.

For each k € VU EU Cut we define
cut(k) := min{c € Cut' | k € area(c)}

cut(k) is called the cut of k and cut(k) is said to enclose directly the vertez
(the edge, the cut) k.

— The graph &' = (V' E',v',Cut',area’) is called a subgraph of & in the cut
cifc € Cut' is the smallest cut such that the following conditions hold:

o V! CV,E' C E,Cut'" C Cut and the mappings v' and area’ are just
the restrictions of v and area to E' resp. Cut' (and are therefore well
defined),

e area(c’) CV'UE'UCut' for each ¢ € Cut’,

o cut(k') € Cut' U{c} for each k' € V' U E*U Cut',

o v € V' for each edge ¢' € E' and every vertex v € V..

We write: ' C & and cut(®') = c.

Note, that for each vertex (or edge, cut or subgraph), the set of all cuts
containing the vertex forms a chain. If the number of cuts enclosing the vertex
is even, the edge is said to be evenly enclosed, and analogously, if the number is
odd, the vertex is said to be oddly enclosed. More formally:

Definition 5. Let & = (V, E,v,Cut,area) be a directed multi-hypergraph with
cuts, let k be a subgraph or an element of VU EUCut . Let n be the number of
cuts which enclose k (n := |{c € Cut|c € area(c)}|). If n is even, k is said to
be evenly enclosed, otherwise k is said to be oddly enclosed. An evenly enclosed
cut is called positive, an oddly enclosed cut is called negative.

Now, the structure of simple concept graphs with cuts is derived from the
structure of directed multi-hypergraphs with cuts by additionally labeling the

vertices and edges with concept names and relation names, respectively, and
by assigning a reference to each vertex. In particular all definitions concerning
directed multi-hypergraphs with cuts can be transferred to concept graphs. So
in the following we will deal with subgraphs of concept graphs etc.

Definition 6. A (nonexistential) simple concept graph with cuts over the al-
phabet A is a structure & := (V, E,v,Cut, area, , p), where

— (V,E,v,Cut,area) is a directed multi-hypergraph with cuts

— k:VUE = CUR is a mapping such that (V) C C and k(E) C R, and all
e € E with v(e) = (v1,...,vy) satisfy k(e) € Ry

— p:V = G is a mapping

It is not clear what a graph containing vertices with more than one object,
enclosed by a cut, means, and this might lead to misunderstandings. For this
reason, the mapping p maps vertices only to elements of G, not to subsets of
G (in contrast to the definition of Prediger in [Pr98b]). Furthermore, p can be
naturally extended to the edges: If e is an edge with v(e) = (v1,...,v;), let

pe) = (p(1), . ().

3 Semantics

Usually, a semantics for conceptual graphs is given by a translation of graphs into
formulas of first order logic, hence into formulas of another syntactically given
structure. In Prediger (cf. [Pr98a], [Pr98b]), a different approach is presented.
There, an extensional semantics which is based on power context families as
model structures is introduced. The motivation for this conteztual semantics
can be read in [Pr98al. With this semantics, Prediger develops a semantical
entailment relation between concept graphs, and a sound and complete calculus
for this entailment relation is presented. Now this approach shall be extended to
concept graphs with cuts.

In concept graphs without cuts, only the conjunction of positive information
can be expressed. For this reason it was possible for Prediger to construct for
each concept graph a standard model in which all the information of the concept
graph is encoded. Standard models have been an additional possibility (besides
the entailment relation and the calculus) for doing reasoning with concept graph.
If negations are used, one can express with concept graphs the disjunction of
pieces of information. But disjunction of information can not be canonically
encoded in standard models. Thus if we introduce negations to concept graphs,
unfortunately the construction of standard models has to be dropped.

Now, let us recall the basic definitions of Prediger.

Definition 7. A power context family K := (Ky,...,K,) of type n (for an
n € N) is a family of contexts Ky, := (G, My, I},) that satisfies Gy, C (Go)* for
each k =1,...,n. Then we write K .= (Gry My, It)g—o.....n- The elements of the
set Ry == Up_; B(Kx) are called relation-concepts.

Interpreting a concept graph in a power context family, the object names will
be interpreted by objects, e.g. by elements of the set Gy. The concept names of
our alphabet will be interpreted by concepts in the context Ky, and relation
names of arity k£ will be interpreted by relation-concepts in the context K. Of
course, every reasonable interpretation has to respect the orders on the names.
This leads to the following definition:

Definition 8. For an alphabet A := (G,C,R) and a power context family TK, we
call the union X := AgU e UM of the mappings A\g:G — Go, Ac:C = B(Kg)
and A\R: R — Rz a K—interpretation of A, if A\¢ and Ar are order-preserving,
Ae(T) = T, AMe(Ri) € B(Ky) for all k = 1,...,n, and (91,92) € Ar(id) &
g1 = g2 for all g1,92> € G hold. The tupel (H-(‘ A) is called context-interpretation
of A or, according to classical logic, A-structure.

Recall that we defined p(e) := (p(v1),.-.,p(v,)) for edges e with v(e) =
(vi,....vg). Because Ag is a mapping on the set G of object names, it can be
naturally extended to tupels of object names. In particular we get Ag(p(e)) :=
(Ag(p(v1)),-- s Ag(p(vn)))-

Now we can define whether a concept graph is valid in an A-structure. This
is done in a canonical way:

Definition 9. Let K be a power context family and let & be a concept graph.
Inductively over ¢ € Cut', we define K = &[c] in a canonical way:
K= 8[] <

— Ag(p(v)) € Ext(Ac(k(v))) for each v € V with cut(v) = ¢ (vertex condition)
— Ag(p(e)) C Ext(Ar(k(e))) for each e € E with cut(e) = ¢ (edge condition)
-K B[c'] for each ¢ € Cut with cut(c') = ¢ (iteration over Cut")

For K |= &[T] we write K |= 6.

If we have two concept graphs &, &, such that K = &, for each A-structure
with K |= &,, we write &, = 6,.

Intuitively, K = &[c] can be read as K = @‘"rmm. But note that generally
area(c) is not a subgraph of &. Therefore this should not be understood as a
precise definition.

4 Calculus

The following calculus is based on the a-calculus of Peirce for existential graphs
without lines of identity. These existential graphs consist only of propositional
variables and ovals and are equivalent to propositional calculus.

For the sake of intelligibility, the whole calculus is described using common
spoken language. Only the rules ‘erasure’, ‘iteration’, and ‘merging two vertices’
will be described in a mathematically precise manner to show that using full

sentences does not imply the loss of precision. This precision is definitely nec-
essary because there must not be any possibility for misunderstandings of the
rules. The rule ‘iteration’ for example, says that a subgraph of a graph can be
copied into the same or a nested context. If this is to have a unique meaning,
one requires a precise definition of ‘subgraph’ and ‘same or nested context’.

First, we present the whole calculus. The first five rules of the calculus are
the original rules of Peirce’s a-calculus. The further rules are needed to encom-
pass the orders on the concept- and relation names, to encompass the special
properties of the concept name T and the relation name id and to deal with the
possibility that different vertices can have the same reference.

Definition 10. The calculus for (nonezistential) simple concept graph with cuts
over the alphabet A.

erasure
In positive cuts, any directly enclosed edge, isolated vertex and closed sub-
graph may be erased.

— insertion
In negative cuts, any directly enclosed edge, isolated vertez and closed sub-
graph may be inserted.

— iteration
Let &, := (Vo, Eo, Vo, Ko. po, Cuto) be a subgraph of & and let ¢ < cut(®,)
be a cut such that ¢ ¢ Cuto. Then a copy of By may be inserted into c.
deiteration
If B¢ is a subgraph of & which could have been inserted by rule of iteration,
then it may be erased.

— double negation
Double cuts (two cuts ci,cy with cut *(cy) = {c1}) may be inserted or erased.

— isomorphism
A graph may be substituted by an isomorphic copy of itself.

— generalization
For evenly enclosed vertices and edges the concept names respectively relation
names may be generalized.
specialization
For oddly enclosed vertices and edges the concept names respectively relation
names may be specialized.

— T-rule
For each object name g, an isolated vertex may be inserted or erased
in arbitrary cuts.

— merging two vertices

For each object name g, a vertex may be merged into a vertex
(i.e. is erased and, for every edge e, e(i) : is substituted by

o [P-a))
Two vertices in the same cut and with the same reference may be merged.

reverse merging of two vertices
A merging of two vertices may be reversed.

— rules of identity

o reflexivity
For arbitrary vertices v edges e with k(e) = id, cut(e) = cut(v) and
e‘] = 8‘2 = v may be inserted or erased.

e symmetry
If e is an edge with k(e) = id, then e may be substituted by an edge €'
which fulfills e"l = 8‘2, e"z = 6‘1 and cut(e') = cut(e).

o transitivity
If ey, es are two edges with k(e1) = k(ex) = id, cut(er) = cut(es) and
81‘2 = 82‘1, then edges e with k(e) = id, cut(e) = cut(ey), e‘l = el|1

and 8‘2 = €2|2 may be inserted or erased.
® congruence
If e is an edge with p(e‘]) =g, p(e‘l) = g» and k(e) = id, then p(e‘l) =
)=
1

g1 may be substituted by p(e|,) = g

To see how these rules can be written down mathematically, here are the
precise definitions for the rules ‘erasure’, ‘iteration’ and ‘merging two vertices’.

— If & := (V,E,v, k,p,Cut) is a concept graph with the closed subgraph &, :=
(Vo, Eo, vo, Ko, po, Cutg) and if ¢ is a cut with ¢ ¢ Cuto, then let &' be the
following graph:

o V= Vx{1} U Vox{2}

E':=Ex{1} U Eyx{2}

V' ((e,4)) = ((v1,4), - - -, (vn, 1)) for (e,i) € E' and v(e) = (vy,---,vn)

k'((e,1)) == k(e) and £'((v,1)) := k(v) for all (e,i) € E', (v,i) € V'

p'((v,7)) = p(v) for all (v,i) € V'

Cut' := Cutx {1} U Cutox {2}

area’ is defined as follows: Let ¢ € Cut.

for ¢ € Cutg let area’((c,2)) := area(c) x {2}

for ¢ # @ let area'((c, 1)) := area(c) x {1}

for ¢ > ¢ let area'((c, 1)) := area(c)x {1} U (Vo U Ey U Cuto) x {2}

Then we say that & is derived from & by iterating the subgraph ®q into the

cut .

If 8 := (V,E,v, &, p,Cut) is a concept graph with the closed subgraph &, :=

(Vo, Eo, v, Ko, po, Cutg), then let &' be the following graph:

o Vi=V\W

e E':=E\Eg

o V=

o &' = Klviup

e p' = plv

o Cut' := Cut\Cutq

ared'(c') == area(c')| o
Then we say that &' is derived from & by erasing the subgraph ®q.
If & := (V,E,v,k,p,Cut) is a concept graph with two vertices vi,vs € V,
then let &' be the following graph:
o V' i=V\{uvi}

¢« E'':=FE

e V' is defined as follows: For l/((’)‘l = let V’(ﬁ)‘i = {U;} Z i 21 .
o &' :=Klviup

e 0= plv

o Cut' =Cut

o ared' () = area(c)| v poow

Then we say that &' is derived from & by merging vy into v;.

These rules are sound and complete with respect to the given semantics (see
Theorem 1). Instead of proving this theorem formally, some heuristics for the
rules are presented.

First note, that all the rules are in some sense dually symmetric with respect
to positive and negative cuts. More precisely, every rule which can be applied in
one direction in positive cuts can be applied in the opposite direction in negative
cuts, and vice versa. So if a rule can only be applied in positive contexts, this
rule has a counterpart for negative contexts (like erasure and insertion or like
generalization and specialization). All other rules apply both to positive and
negative contexts.

The first five rules are sound and complete concerning the classical proposi-
tional calculus. If all vertices and edges would be understood as logically inde-
pendent propositional variables, these rules would be enough. The rules ‘gener-
alization’, ‘specialization’ and ‘T-rule’ encompass the orders on the concept and
relation names. Note that T is not only the greatest element of all concepts: The
semantics for T implies that every object belongs to the extension of the concept
T. Thus the generalization rule does not encompass all properties of the concept
T, and the T-rule is necessary. The same is true for the relation id. In fact it
is a congruence relation by definition. This is encompassed by the id-rules. The
specialization rule can be derived from the other rules, but it is added to keep
the calculus symmetric. The rules ‘merging two vertices’ and ‘reverse merging of
two vertices’ deal with the fact that one object may be the reference for different
vertices. With these rules it is possible to transform every concept graph into an
equivalent graph in which no cut intersects a relation line. More precisely:

Definition 11. A concept graph is called free of intersections, if it fulfills the
following condition: Ve€ EVYv€EV v € Vo = cut(v) = cut(e)

It follows from the rules ‘merging two vertices’ and ‘reverse merging of two ver-
tices’ that every concept graph is equivalent to a graph free of intersections. And
these graphs are easy to read: They have a form which is closely related to the
existential graphs without lines of identity, and the soundness and completeness
of the first five rules concerning existential graphs can be applied now. This leads
to the following essential theorem:

Theorem 1 (soundness and completeness of the calculus).
Two nonezistential, simple concept graph &,, &, with cuts over A satisfy

6, FE, = 6,6,

5 Future Work

How to procede with this work is clear. First the approach has to be extended
to include graphs with generic markers. The @-operator for these graphs has to
be elaborated and it has to be proven that simple concept graphs with negation
ovals and identity are equivalent to first order logic. In part, this has already
been done (e.g. [BMT98]). Afterwards, the approach should be extended to the
nested case. It seems reasonable that nested graphs are equivalent to a certain
class of formulas of modal logic in such a way that nestings will be interpreted as
different possible worlds, which are connected by the structure of the nestings.
And again, a semantics and a sound and complete calculus have to be developed.

References

[BMT98] F. Baader, R. Molitur, S. Tobies: The Guarded Fragment of Conceptual
Graphs. RWTH LTCS-Report.
http://www-1ti.informatik.rwth-aachen.de/Forschung/Papers.html

[CMS98] M. Chein, M.-L. Mugnier, G. Simonet: Nested Graphs: A Graph-based
Knowledge Representation Model with FOL Semantics, Rapport de
Recherche, LIRMM, Université Montpellier II, 1998.

[GW99a] B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin-Heidelberg-New York 1999.

[GW99b] B. Ganter, R. Wille: Contextual attribute logic, in: W. Tepfenhart, W. Cyre
(Eds.): Conceptual Structures: Standards and Practices, Springer Verlag,
Berlin New York 1999, 377-388.

[LK96] D. Lukose, R. Kremer: Knowledge Engineering: PART A, Knowledge Rep-
resentation. http://www.cpsc.ucalgary.ca/~kremer/courses/CG/

[Pe98] C. S. Peirce: Reasoning and the Logic of Things. The Cambridge Conferences
Lectures of 1898. Ed. by K. L. Kremer, Harvard Univ. Press, Cambridge 1992

[Pr98a] S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur
Restrukturierung der mathematischen Logik, Shaker Verlag 1998.

[Pr98b] S. Prediger: Simple Concept Graphs: A Logic Approach, in: M, -L. Mugnier,
M. Chein (Eds.): Conceptual Structures: Theory, Tools and Applications,
Springer Verlag, Berlin New York 1998, 225 239.

[Ro73] D. D. Roberts: The Existential Graphs of Charles Sanders Peirce, Mouton
The Hague — Paris 1973.

[So84] J. F. Sowa: Conceptual Structures: Information Processing in Mind and
Machine. Addison Wesley Publishing Company Reading, 1984.

[S092] J. F. Sowa: Conceptual Graphs Summary, in: T. E. Nagle, J. A. Nagle,
L. L. Gerholz, P. W. Eklund (Eds.): Conceptual Structures: current research
and practice, Ellis Horwood, 1992, 3-51.

[S099] J. F. Sowa: Conceptual Graphs: Draft Proposed American National Stan-
dard, in: W. Tepfenhart, W. Cyre (Eds.): Conceptual Structures: Standards
and Practices, Springer Verlag, Berlin-New York 1999, 1-65.

[So00] J. F. Sowa: Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

[We95] M. Wermelinger: Conceptual Graphs and First-Order Logic, in: G. Ellis et al.
(Eds.): Conceptual Structures: Applications, Implementations and Theory,
Springer Verlag, Berlin New York 1995, 323 337.

