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t. The aim of this paper is to mathemati
ally introdu
e nega-tion to 
on
ept graphs (whi
h are a mathemati
al modi�
ation of 
on
ep-tual graphs) as a well-de�ned synta
ti
al 
onstru
t. First o�, we dis
usssome questions whi
h arise when negations for 
on
eptual graphs arede�ned. In our view, a solution for these questions is to express nega-tions by 
uts in the sense of Peir
e's theory of existential graphs. Aset-theoreti
al semanti
s for (nonexistential) 
on
ept graphs with 
uts isdeveloped in the framework of 
ontextual logi
. A modi�
ation of Peir
e'salpha-
al
ulus, whi
h is sound and 
omplete, is presented.1 MotivationCon
eptual graphs are based on the existential graphs of Charles Sanders Peir
e.These graphs 
onsist of lines 
alled lines of identities, predi
ate names of arbi-trary arity and ovals around subgraphs whi
h are used to negate the en
losedsubgraph. The following three examples are well known:CAT MATON CAT MATON�� �� CAT MATON�� ��The meanings of these graphs are: `a 
at is on a mat', `no 
at is on any mat'and `there is a 
at and there is a a mat su
h that the 
at is not on the mat'.As Peir
e says, "That a proposition is false is a logi
al statement about it, andtherefore in a logi
al system deserves spe
ial treatment." ([Pe98℄). The graphi-
al element oval whi
h Peir
e used to negate its en
losure has been transferredto 
ontext boxes in 
on
eptual graphs. These boxes are used to express thatsome information is valid in spe
i�
 
ontexts or situations. Hen
e, the 
hara
-ter of negation as logi
al operator in existental graphs 
hanged to a metalevel
hara
ter in 
on
eptual graphs. Of 
ourse, in knowledge representation and nat-ural language, negations are unavoidable. So the feature to express negations isdesirable in 
on
ept graphs.To handle negation in 
on
ept graphs, we need to a
hieve the following aims:For the mathemati
al treatment, formation rules for the well-formed formulasmust exist that 
an express negations, and negation has to be 
overed by rulesof inferen
e. To do this in the spirit of Peir
e, the semanti
s of negation hasto be intelligible, and the graphi
al representation of negations must be easilyreadable and intuitively understandable (whi
h has been an important goal inthe theory of 
on
eptual graphs from the very beginning, too).

Negations o

ur in several approa
hes for 
on
eptual graphs. Why we do notadopt and mathematizise one of these approa
hes shall be explained in the restof this se
tion.In order to handle negations, a spe
i�
 synta
ti
al element of the well-formedformulas has to be de
lared to express them. For this purpose, the standard ap-proa
h use a 
ontext box of type Propositionwhi
h is linked to a unary relationof type neg ([So99℄). Sometimes, these spe
ial 
ontext boxes are abbreviated by
ontext boxes of type Negation (e.g. [So00℄) or by drawing a simple re
tanglewith the mathemati
al negation symbol : ([So99℄). Some approa
hes use thesere
tangles without de
laring whether the box is a spe
i�
 synta
ti
al element orjust an abbreviation for 
ontext boxes of a spe
i�
 type (e.g. [We95℄). But botha 
al
ulus and a translation of 
on
eptual graphs into other formal languages(like the translation to �rst order logi
 with the �-operator), have to respe
t thelogi
al role of negation.So, if negation is expressed just by spe
ial 
ontext boxes, any 
al
ulus andany tranlation has to treat these spe
ial 
ontext boxes di�erently from all other
ontext boxes. For example, if negation is expressed by 
ontext boxes of typeNegation, a 
al
ulus should allow the nested boxes in the following graph to beerased (and vi
e versa, to be introdu
ed again):: : : �� �� . . .NEGATION:NEGATION:This seems to be not possible in any 
al
ulus whi
h does not treat the nega-tion boxes separately (like the 
al
ulus of Prediger ([Pr98b℄) or any 
al
uluswhi
h is based on proje
tions).If negation is expressed with 
ontexts of type Proposition, linked to a unaryrelation neg, another diÆ
ulty appears. This shall be shown by the following two
on
eptual graphs:CAT �� �� MATon and CAT �� �� MATonPROPOSITION:The �rst graph is well known: Its meaning is `a 
at is on a mat'. In parti
ular,the graph 
laims to be true. The meaning of the se
ond graph is, stri
tly speak-ing, `there exists a proposition, whi
h states that a 
at is on a mat' ([So99℄),and therefore di�erent to the meaning of the �rst graph. Indeed; in none of the
ommon 
al
uluses, one graph 
an be derived from the other one. Hen
e it isproblemati
 to express the negation of the �rst graph by the se
ond graph witha relation neg.To summarize: It seems to be diÆ
ult to introdu
e negation as a spe
ial
ontext box. These 
ontext boxes have to be treated di�erently to other boxesin the 
al
ulus and in any translation from 
on
eptual graphs to other formallanguages (like the operator �). This yields the following 
on
lusion: For themathemati
al treatment of negation in 
on
ept graphs, in the de�nition of theirwell-formed formulas there should be a spe
i�
 synta
ti
al element whi
h is usedto express negation.



The next step has to 
larify the semanti
s, i.e. the meaning, of negation.To prepare this, we will dis
uss a small example. Consider the true proposition`the painter Rembrandt 
reated the painting `the nightwat
h", whi
h 
an betranslated to the following 
on
eptual graph:PAINTER: Rembrandt �
 �	 PAINTING: the nightwat
h
reateThis graph represents not only the information that Rembrandt 
reated `thenightwat
h', but also that Rembrandt is a painter and `the nightwat
h' is a paint-ing. Now, 
onsider the painting `a starry night' instead of `the nightwat
h'. Thispainting was 
reated by van Gogh, so the proposition `the painter Rembrandtdid not 
reate the painting `the starry night" is true. How 
an this propositionbe transformed to a 
on
eptual graph? The following graph is a �rst attempt:PAINTER: Rembrandt �
 �	 PAINTING: the starry night
reateThis graph is not the translation of the former proposition: In the proposition,only the verb `to 
reate' is negated, but in the graph, the negation box alsoen
loses the information that Rembrandt is a painter and `the starry night' is apainting. The information in the 
on
ept boxes 
an fail, too, as 
an be seen inthe following graph:COMPOSER: van Gogh �
 �	 PAINTING: the starry night
reateThis graph is true although van Gogh did 
reate `the starry night'. In par-ti
ular, this graph should not be read asThe 
omposer Van Gogh did not 
reate the painting `a starry night'.But this understanding is suggested when Sowa in [So00℄ says, that the meaningof the graph [Negation: [Cat: Yoyo℄!(On)![Mat℄℄ is `the graph denies thatthe 
at Yoyo is on a mat'. Now, the goal is to negate only the verb `to 
reate'in the false proposition `the painter Rembrandt 
reated the painting `the starrynight". This problem has already been addressed, one approa
h for its solutionis the following graph:
> :�PAINTER: Rembrandt �
 �	 > :�PAINTING: the starry night
reateFig. 1. CG for `the painter Rembrandt did not 
reate the painting `a starry night"Indeed, this graph expresses the proposition `the painter Rembrandt did not
reate the painting `the starry night'. But obviously, the aim of making 
on
ep-tual graphs easily readable and intuitively understandable is not ful�lled.

Expressing identity in 
on
eptual graphs with 
oreferen
e-links or 
oreferen
e-sets leads to another 
lass of diÆ
ulties. In parti
ular, the meaning of 
oreferen
e-links 
onne
ted to a 
on
ept box within a negation is not straightforward. Thisshall be explained next:In 
on
eptual graphs, 
oreferen
e-links (whi
h are used to express 
oreferen
e-sets ([So99℄)) are used to express the identity of two entities: "Two 
on
epts thatrefer to the same individual are 
oreferent. [. . . ℄ To show that they are 
orefer-ent, they are 
onne
ted with a dotted line, 
alled a 
oreferen
e link." ([So92℄).Consider the following graph:> :� > :� > :�Fig. 2. 
on
eptual graph for 9x9y:x 6=yA

ording to Sowa ([So00℄), the operator � translates this graph into the �rstorder logi
 formula 9x9y:9z(z=x^z=y), whi
h is equivalent to 9x9y:x 6= y. Inparti
ular, the three 
on
ept boxes 
annot refer to the same individual. Note that� assigns di�erent variables to the generi
 markers of di�erent 
on
ept boxes,even if they are 
onne
ted with a 
oreferen
e-link. These variables are expli
itlyset to be equal in the formula, and they are equated inside the negated part ofthe formula. But sin
e the links in the graph looks symmetri
, it is not 
learto a reader why the equating in the formula is pla
ed inside and not outside ofthe negated subformula. This ambiguity 
an be seen even better in the followingexample: PAINTER: Rembrandt PAINTER: Van GoghIf � translates this graph to PAINTER(R) ^ :(R = V G ^ PAINTER(V G)),the resulting formula is true, but if � translates this graph to PAINTER(R) ^Rembrandt = V G ^ :(PAINTER(V G)) the resulting formula is not true (thenames in the formulas are abbreviated by R and V G). Hen
e, in order to under-stand the right meaning of this graph, the reader must have in mind the impli
itagreement that equality is always pla
ed in the inner 
ontext.If we a

ept this meaning of 
oreren
e links, the next step is is to make
lear whi
h synta
ti
al element in the well-formed formulas is used for them,and how they are handled by a 
al
ulus. In the abstra
t syntax of 
on
eptualgraphs ([So99℄), 
oreferen
e-links are generalized to 
oreferen
e-sets. For exam-ple, Figure 2 has two 
oreferen
e sets whi
h are represented by 
oreferen
e-links.Coreferen
e-sets are suÆ
ient to handle 
oreferen
e in 
on
eptual graphs withnegations. But still rules are needed that treat these sets in a sound and 
om-plete way (for example, there have to be rules whi
h allow a link to be drawn orerased from a 
on
ept box to itself). Some 
al
uluses la
k rules like this.To summarize again: Introdu
ing 
oreferen
e sets to express identity maylead to misunderstandings of their meaning and to gaps in their synta
ti
alimplementation.



To 
ope with all the mentioned problems, we suggest the following: First,negations should be introdu
ed as a new synta
ti
al element, namely the ovalsof Peir
e, whi
h 
an be drawn around arbitrary parts of a 
on
eptual graph. Todistinguish these ovals from the ovals whi
h are drawn around relation names,we propose drawing them in bold. For example, inPAINTER: Rembrandt �
 �	 PAINTING: the starry night
reateonly the relation 
reate has to be negated, and inCOMPOSER: van Gogh �
 �	 PAINTING: the starry night
reateonly the 
on
ept box COMPOSER: van Gogh has to be negated. The result-ing 
on
eptual graphs are:PAINTER: Rembrandt �
 �	 PAINTING: the starry night
reate�� ��COMPOSER: van Gogh �
 �	 PAINTING: the starry night
reate�� ��Be
ause the present interpretation of 
oreferen
e-links is not intuitive in somesense, we suggest to introdu
e a spe
ial binary relation id (as in �rst order logi
).The advantages of this approa
h are1. id 
an be trated like other relations and2. the identity 
an be negated without loss of readability.In our view this yields a more understandable notion of identity (as understoodin mathemati
s). For example, the meaning of the graph> :� �� ��id > :��Æ �
Fig. 3. CG with negation ovals for 9x9y:x 6=yis `there exist at least two things'. Thus, it has the same meaning as the graphin Figure 2, but is mu
h simpler. Furthermore, it shows that id is a propersynta
ti
al extension and not a dire
t mathematization of 
oreferen
e links.Sin
e the synta
ti
al elements whi
h allow negations and identity are ex-tended and in this approa
h, every 
on
eptual graph with negation boxes and
oreferen
e-links 
an be translated into a 
on
ept graph with negation ovalsand the relation id. Of 
ourse, negation boxes (for example, 
ontext boxes oftype Negation) are translated to negation ovals. A 
oreferen
e-link between two
ontext boxes is translated into a relation id between the boxes su
h that therelation node id is pla
ed in the negation oval of the dominated 
ontext box. Wewill exemplify this with the following: The 
on
eptual graph> :� > :� > :�is translated to the following 
on
eptual graph with negation ovals and the re-lation id:

> :� �
 �	id > :� �
 �	id > :��� ��Fig. 4. another CG with negation ovals for 9x9y:x 6=yThis graph 
an be transformed to the graph in Figure 3, whi
h has the samemeaning, but looks mu
h simpler. On the other hand, 
on
ept graphs with nega-tion ovals and the relation id 
an be translated to graphs with negation boxesand 
oreferen
e-links. But be
ause negation ovals need not in
lude subgraphs,but arbitrary subsets of 
on
ept nodes and relations nodes, this translation ismore 
ompli
ated than the translation in the other dire
tion. For example: Be-fore the graph in Figure 3 
an be translated, it has to be transformed into thegraph in Figure 4.The approa
h we present here is 
losely related to the original ideas of Peir
e.It is easier to mathematize than approa
hes based on 
on
ept boxes of a spe
i�
type. In this paper, our approa
h shall be elaborated for simple 
on
ept graphswithout generi
 markers, but with negation ovals and the relation id. In parti
-ular, the syntax for these graphs is de�ned, an extensional semanti
s for thesegraphs is introdu
ed (whi
h is based on power 
ontext families), and a soundand 
omplete 
al
ulus is presented. Furthermore, this approa
h allows to de�nemathemati
ally the operator � on simple 
on
ept graphs (whi
h maps graphsto �rst order logi
 formulas) and its inverse operator 	 (whi
h maps �rst orderlogi
 formulas to graphs) su
h that both respe
t the (synta
ti
al or semanti
)entailment relation on graphs and formulas, respe
tively. In parti
ular, the ex-pressiveness of simple graphs and �rst order logi
 formulas is the same. This willbe elaborated in a work whi
h is in progress now.2 Basi
 De�nitionsSimple 
on
ept graphs are introdu
ed by Prediger in [Pr98b℄ as mathemati
allyde�ned synta
ti
al 
onstru
ts. We take into a

ount her approa
h and extendedit to in
lude the possibily to express negations by using 
uts and the possibilityto express identity by using a spe
ial binary relation id.First we have to start with ordered sets of names for obje
ts, names andrelations. These orders represent the 
on
eptual ontology of the domain we 
on-sider.De�nition 1. An alphabet of 
on
eptual graphs is a tripel A := (G; C;R) su
hthat{ G is a �nite set whose elements are 
alled obje
t names{ (C;�C) is a �nite ordered set with a greatest element > whose elements are
alled 
on
ept names{ (R;�R) is a union of �nite ordered sets (Rk;�Rk), k = 1; : : : ; n (for ann 2 N with n � 1) whose elements are 
alled relation names. Let id 2 R2.



Now we 
an de�ne the underlying stru
tures of 
on
ept graphs with 
uts.This de�nition extends the de�nition of dire
ted multi-hypergraphs given in[Pr98b℄ by 
uts, so that negations 
an be expressed.De�nition 2. A dire
ted multi-hypergraph with 
uts (of type n) is a stru
ture(V;E; �; Cut; area) su
h that{ V and E are �nite sets whose elements are 
alled verti
es and edges, respe
-tively,{ � : E ! S nk=1V k (for a n 2 N; n � 1) is a mapping,{ Cut is a �nite set whose elements are 
alled 
uts and{ area : Cut ! P(V [ E [ Cut) is a mapping su
h that 
 =2 area(
) for ea
h
 2 Cut and, for two 
uts 
1; 
2 with 
1 6= 
2, exa
tly one of the following
onditions holds:i) f
1g [ area(
1) � area(
2),ii) f
2g [ area(
2) � area(
1),iii) (f
1g [ area(
1)) \ (f
2g [ area(
2)) = ;.For an edge e 2 E with �(e) = (v1; : : : ; vk) we de�ne jej := k and �(e)��i := vi.For ea
h v 2 V , let Ev := fe 2 E j 9 i: �(e)��i = vg, and analogously for ea
he 2 E, let Ve := fv 2 V j 9 i: �(e)��i = vg. If it 
annot be misunderstood, wewrite e��i instead of �(e)��i.The notion of 
uts and areas is 
losely related to the ideas of Peir
e, as theyare des
ribed in the work of Roberts (see [Ro73℄). Peir
e negated parts of anexistential graph just by drawing an oval around it. This oval (more exa
tly justthe line whi
h is drawn on the sheet of assertion) is 
alled a 
ut. In parti
ular, a
ut is not a graph. The spa
e within a 
ut is 
alled its 
lose or area. So the areaof a 
ut 
 
ontains verti
es, edges and other 
uts, even if they are deeper nestedinside other 
uts, but not the 
ut 
 itself. All the edges, verti
es and 
uts in thearea of 
 are said to be en
losed by 
.Cuts do not interse
t ea
h other by the de�nition of Peir
e. So for two dif-ferent 
uts 
1; 
2, exa
tly one of the following 
ases o

urs:{ 
1 and its area is entirely en
losed by 
2,{ 
2 and its area is entirely en
losed by 
1,{ 
1 and its area and 
2 and its area have nothing in 
ommon.Obvioulsy, these three 
ases 
oin
ide with the three 
onditions for the map-ping area in De�nition 2. Now, let us �rst mention some simple properties forthe mapping area whi
h 
an be shown easily:{ 
1 6= 
2 ^ area(
1) = area(
2) =) area(
1) = area(
2) = ;{ ; ( area(
1) ( area(
2) =) 
1 2 area(
2){ 
1 2 area(
2) =) area(
1) � area(
2)In many 
ases it makes sense to treat the outermost 
ontext, the sheet ofassertion, as an (additional) 
ut. If we abbreviate the sheet of assertion by >,we immediately 
ome to the following de�nition:

De�nition 3. If Cut is a set of 
uts of a dire
ted multi-hypergraph with 
uts andif area is the appropriate mapping, then let Cut> := Cut _[f>g and area(>) :=V [ E [ Cut.It is easy to see that this extension still satis�es the 
onditions for the map-ping area whi
h are given in De�nition 2. This means that the properties wehave just shown for Cut hold for Cut>, too.By 
1 � 
2 :() 
1 2 area(
2) a 
anoni
al ordering on Cut>, whi
h is a treewith > as greatest element, is de�ned. This 
an be veri�ed with the propertiesfor the mapping area.Obviously, ea
h edge and vertex is en
losed dire
tly (and not deeper nested)in a uniquely given 
ut 
. For the further work, the notion of a subgraph is needed.It seems to be evident that a subgraph is en
losed dire
tly in a uniquely given 
ut
, too. The notions of being dire
tly en
losed and subgraph shall be
ome pre
isethrough the following de�nition:De�nition 4. Let G = (V;E; �; Cut; area) be a dire
ted multi-hypergraph with
uts.{ For ea
h k 2 V [ E [ Cut we de�ne
ut(k) := minf
 2 Cut> j k 2 area(
)g
ut(k) is 
alled the 
ut of k and 
ut(k) is said to en
lose dire
tly the vertex(the edge, the 
ut) k.{ The graph G0 = (V 0; E0; �0; Cut0; area0) is 
alled a subgraph of G in the 
ut
 if 
 2 Cut> is the smallest 
ut su
h that the following 
onditions hold:� V 0 � V;E0 � E;Cut0 � Cut and the mappings �0 and area0 are justthe restri
tions of � and area to E0 resp. Cut0 (and are therefore wellde�ned),� area(
0) � V 0 [E0 [ Cut0 for ea
h 
0 2 Cut0,� 
ut(k0) 2 Cut0 [ f
g for ea
h k0 2 V 0 [ E` [ Cut0,� v 2 V 0 for ea
h edge e0 2 E0 and every vertex v 2 Ve.We write: G0 � G and 
ut(G0) = 
.Note, that for ea
h vertex (or edge, 
ut or subgraph), the set of all 
uts
ontaining the vertex forms a 
hain. If the number of 
uts en
losing the vertexis even, the edge is said to be evenly en
losed, and analogously, if the number isodd, the vertex is said to be oddly en
losed. More formally:De�nition 5. Let G = (V;E; �; Cut; area) be a dire
ted multi-hypergraph with
uts, let k be a subgraph or an element of V [E [Cut>. Let n be the number of
uts whi
h en
lose k (n := jf
 2 Cut j 
 2 area(
)gj). If n is even, k is said tobe evenly en
losed, otherwise k is said to be oddly en
losed. An evenly en
losed
ut is 
alled positive, an oddly en
losed 
ut is 
alled negative.Now, the stru
ture of simple 
on
ept graphs with 
uts is derived from thestru
ture of dire
ted multi-hypergraphs with 
uts by additionally labeling the



verti
es and edges with 
on
ept names and relation names, respe
tively, andby assigning a referen
e to ea
h vertex. In parti
ular all de�nitions 
on
erningdire
ted multi-hypergraphs with 
uts 
an be transferred to 
on
ept graphs. Soin the following we will deal with subgraphs of 
on
ept graphs et
.De�nition 6. A (nonexistential) simple 
on
ept graph with 
uts over the al-phabet A is a stru
ture G := (V;E; �; Cut; area; �; �), where{ (V;E; �; Cut; area) is a dire
ted multi-hypergraph with 
uts{ � : V [E ! C [R is a mapping su
h that �(V ) � C and �(E) � R, and alle 2 E with v(e) = (v1; : : : ; vk) satisfy �(e) 2 Rk{ � : V ! G is a mappingIt is not 
lear what a graph 
ontaining verti
es with more than one obje
t,en
losed by a 
ut, means, and this might lead to misunderstandings. For thisreason, the mapping � maps verti
es only to elements of G, not to subsets ofG (in 
ontrast to the de�nition of Prediger in [Pr98b℄). Furthermore, � 
an benaturally extended to the edges: If e is an edge with v(e) = (v1; : : : ; vk), let�(e) := (�(v1); : : : ; �(vn)).3 Semanti
sUsually, a semanti
s for 
on
eptual graphs is given by a translation of graphs intoformulas of �rst order logi
, hen
e into formulas of another synta
ti
ally givenstru
ture. In Prediger (
f. [Pr98a℄, [Pr98b℄), a di�erent approa
h is presented.There, an extensional semanti
s whi
h is based on power 
ontext families asmodel stru
tures is introdu
ed. The motivation for this 
ontextual semanti
s
an be read in [Pr98a℄. With this semanti
s, Prediger develops a semanti
alentailment relation between 
on
ept graphs, and a sound and 
omplete 
al
ulusfor this entailment relation is presented. Now this approa
h shall be extended to
on
ept graphs with 
uts.In 
on
ept graphs without 
uts, only the 
onjun
tion of positive information
an be expressed. For this reason it was possible for Prediger to 
onstru
t forea
h 
on
ept graph a standard model in whi
h all the information of the 
on
eptgraph is en
oded. Standard models have been an additional possibility (besidesthe entailment relation and the 
al
ulus) for doing reasoning with 
on
ept graph.If negations are used, one 
an express with 
on
ept graphs the disjun
tion ofpie
es of information. But disjun
tion of information 
an not be 
anoni
allyen
oded in standard models. Thus if we introdu
e negations to 
on
ept graphs,unfortunately the 
onstru
tion of standard models has to be dropped.Now, let us re
all the basi
 de�nitions of Prediger.De�nition 7. A power 
ontext family ~K := (K 0 ; : : : ;Kn ) of type n (for ann 2 N) is a family of 
ontexts K k := (Gk;Mk; Ik) that satis�es Gk � (G0)k forea
h k = 1; : : : ; n. Then we write ~K := (Gk ;Mk; Ik)k=0;:::;n. The elements of theset R~K := Snk=1B(K k ) are 
alled relation-
on
epts.

Interpreting a 
on
ept graph in a power 
ontext family, the obje
t names willbe interpreted by obje
ts, e.g. by elements of the set G0. The 
on
ept names ofour alphabet will be interpreted by 
on
epts in the 
ontext K 0 , and relationnames of arity k will be interpreted by relation-
on
epts in the 
ontext K k . Of
ourse, every reasonable interpretation has to respe
t the orders on the names.This leads to the following de�nition:De�nition 8. For an alphabet A := (G; C;R) and a power 
ontext family ~K , we
all the union � := �G _[�C _[ �R of the mappings �G :G ! G0, �C : C ! B(K 0 )and �R:R ! R~K a ~K -interpretation of A, if �C and �R are order-preserving,�C(>) = >, �R(Rk) � B(K k ) for all k = 1; : : : ; n, and (g1; g2) 2 �R(id) ,g1 = g2 for all g1; g2 2 G hold. The tupel (~K ; �) is 
alled 
ontext-interpretationof A or, a

ording to 
lassi
al logi
, A-stru
ture.Re
all that we de�ned �(e) := (�(v1); : : : ; �(vn)) for edges e with v(e) =(v1; : : : ; vk). Be
ause �G is a mapping on the set G of obje
t names, it 
an benaturally extended to tupels of obje
t names. In parti
ular we get �G(�(e)) :=(�G(�(v1)); : : : ; �G(�(vn))).Now we 
an de�ne whether a 
on
ept graph is valid in an A-stru
ture. Thisis done in a 
anoni
al way:De�nition 9. Let ~K be a power 
ontext family and let G be a 
on
ept graph.Indu
tively over 
 2 Cut>, we de�ne ~K j= G[
℄ in a 
anoni
al way:~K j= G[
℄(){ �G(�(v)) 2 Ext(�C(�(v))) for ea
h v 2 V with 
ut(v) = 
 (vertex 
ondition){ �G(�(e)) � Ext(�R(�(e))) for ea
h e 2 E with 
ut(e) = 
 (edge 
ondition){ ~K 6j= G[
0℄ for ea
h 
0 2 Cut with 
ut(
0) = 
 (iteration over Cut>)For ~K j= G[>℄ we write ~K j= G.If we have two 
on
ept graphs G1, G2 su
h that ~K j= G2 for ea
h A-stru
turewith ~K j= G1, we write G1 j= G2.Intuitively, ~K j= G[
℄ 
an be read as ~K j= G��area(
). But note that generallyarea(
) is not a subgraph of G. Therefore this should not be understood as apre
ise de�nition.4 Cal
ulusThe following 
al
ulus is based on the �-
al
ulus of Peir
e for existential graphswithout lines of identity. These existential graphs 
onsist only of propositionalvariables and ovals and are equivalent to propositional 
al
ulus.For the sake of intelligibility, the whole 
al
ulus is des
ribed using 
ommonspoken language. Only the rules `erasure', `iteration', and `merging two verti
es'will be des
ribed in a mathemati
ally pre
ise manner to show that using full



senten
es does not imply the loss of pre
ision. This pre
ision is de�nitely ne
-essary be
ause there must not be any possibility for misunderstandings of therules. The rule `iteration' for example, says that a subgraph of a graph 
an be
opied into the same or a nested 
ontext. If this is to have a unique meaning,one requires a pre
ise de�nition of `subgraph' and `same or nested 
ontext'.First, we present the whole 
al
ulus. The �rst �ve rules of the 
al
ulus arethe original rules of Peir
e's �-
al
ulus. The further rules are needed to en
om-pass the orders on the 
on
ept- and relation names, to en
ompass the spe
ialproperties of the 
on
ept name > and the relation name id and to deal with thepossibility that di�erent verti
es 
an have the same referen
e.De�nition 10. The 
al
ulus for (nonexistential) simple 
on
ept graph with 
utsover the alphabet A.{ erasureIn positive 
uts, any dire
tly en
losed edge, isolated vertex and 
losed sub-graph may be erased.{ insertionIn negative 
uts, any dire
tly en
losed edge, isolated vertex and 
losed sub-graph may be inserted.{ iterationLet G0 := (V0; E0; �0; �0; �0; Cut0) be a subgraph of G and let �
 � 
ut(G0)be a 
ut su
h that �
 =2 Cut0. Then a 
opy of G0 may be inserted into �
.{ deiterationIf G0 is a subgraph of G whi
h 
ould have been inserted by rule of iteration,then it may be erased.{ double negationDouble 
uts (two 
uts 
1; 
2 with 
ut�1(
2) = f
1g) may be inserted or erased.{ isomorphismA graph may be substituted by an isomorphi
 
opy of itself.{ generalizationFor evenly en
losed verti
es and edges the 
on
ept names respe
tively relationnames may be generalized.{ spe
ializationFor oddly en
losed verti
es and edges the 
on
ept names respe
tively relationnames may be spe
ialized.{ >-ruleFor ea
h obje
t name g, an isolated vertex > : g may be inserted or erasedin arbitrary 
uts.{ merging two verti
esFor ea
h obje
t name g, a vertex > : g may be merged into a vertex P : g(i.e. > : g is erased and, for every edge e, e(i) = > : g is substituted bye(i) = P : g ).Two verti
es in the same 
ut and with the same referen
e may be merged.{ reverse merging of two verti
esA merging of two verti
es may be reversed.

{ rules of identity� re
exivityFor arbitrary verti
es v edges e with �(e) = id, 
ut(e) = 
ut(v) ande��1 = e��2 = v may be inserted or erased.� symmetryIf e is an edge with �(e) = id, then e may be substituted by an edge e0whi
h ful�lls e0��1 = e��2, e0��2 = e��1 and 
ut(e0) = 
ut(e).� transitivityIf e1, e2 are two edges with �(e1) = �(e2) = id, 
ut(e1) = 
ut(e2) ande1��2 = e2��1, then edges e with �(e) = id, 
ut(e) = 
ut(e1), e��1 = e1��1and e��2 = e2��2 may be inserted or erased.� 
ongruen
eIf e is an edge with �(e��1) = g1, �(e��1) = g2 and �(e) = id, then �(e��1) =g1 may be substituted by �(e��1) = g2.To see how these rules 
an be written down mathemati
ally, here are thepre
ise de�nitions for the rules `erasure', `iteration' and `merging two verti
es'.{ If G := (V;E; �; �; �; Cut) is a 
on
ept graph with the 
losed subgraph G0 :=(V0; E0; �0; �0; �0; Cut0) and if �
 is a 
ut with �
 =2 Cut0, then let G0 be thefollowing graph:� V 0 := V �f1g [ V0�f2g� E0 := E�f1g [ E0�f2g� �0((e; i)) = ((v1; i); : : : ; (vn; i)) for (e; i) 2 E0 and �(e) = (v1; : : : ; vn)� �0((e; i)) := �(e) and �0((v; i)) := �(v) for all (e; i) 2 E0, (v; i) 2 V 0� �0((v; i)) = �(v) for all (v; i) 2 V 0� Cut0 := Cut�f1g [ Cut0�f2g� area0 is de�ned as follows: Let 
 2 Cut.for 
 2 Cut0 let area0((
; 2)) := area(
)�f2gfor 
 6� �
 let area0((
; 1)) := area(
)�f1gfor 
 � �
 let area0((
; 1)) := area(
)�f1g [ (V0 [ E0 [ Cut0)�f2gThen we say that G0 is derived from G by iterating the subgraph G0 into the
ut �
.{ If G := (V;E; �; �; �; Cut) is a 
on
ept graph with the 
losed subgraph G0 :=(V0; E0; �0; �0; �0; Cut0), then let G0 be the following graph:� V 0 := V nV0� E0 := EnE0� �0 := �jE0� �0 := �jV 0[E0� �0 := �jV 0� Cut0 := CutnCut0� area0(
0) := area(
0)��V 0[E0Cut0Then we say that G0 is derived from G by erasing the subgraph G0.{ If G := (V;E; �; �; �; Cut) is a 
on
ept graph with two verti
es v1; v2 2 V ,then let G0 be the following graph:� V 0 := V nfv1g



� E0 := E� �0 is de�ned as follows: For �(e)��i = v let �0(e)��i = � v v 6= v1v2 v = v1 .� �0 := �jV 0[E� �0 := �jV 0� Cut0 = Cut� area0(
0) := area(
0)��V 0[E[CutThen we say that G0 is derived from G by merging v2 into v1.These rules are sound and 
omplete with respe
t to the given semanti
s (seeTheorem 1). Instead of proving this theorem formally, some heuristi
s for therules are presented.First note, that all the rules are in some sense dually symmetri
 with respe
tto positive and negative 
uts. More pre
isely, every rule whi
h 
an be applied inone dire
tion in positive 
uts 
an be applied in the opposite dire
tion in negative
uts, and vi
e versa. So if a rule 
an only be applied in positive 
ontexts, thisrule has a 
ounterpart for negative 
ontexts (like erasure and insertion or likegeneralization and spe
ialization). All other rules apply both to positive andnegative 
ontexts.The �rst �ve rules are sound and 
omplete 
on
erning the 
lassi
al proposi-tional 
al
ulus. If all verti
es and edges would be understood as logi
ally inde-pendent propositional variables, these rules would be enough. The rules `gener-alization', `spe
ialization' and `>-rule' en
ompass the orders on the 
on
ept andrelation names. Note that > is not only the greatest element of all 
on
epts: Thesemanti
s for > implies that every obje
t belongs to the extension of the 
on
ept>. Thus the generalization rule does not en
ompass all properties of the 
on
ept>, and the >-rule is ne
essary. The same is true for the relation id. In fa
t itis a 
ongruen
e relation by de�nition. This is en
ompassed by the id-rules. Thespe
ialization rule 
an be derived from the other rules, but it is added to keepthe 
al
ulus symmetri
. The rules `merging two verti
es' and `reverse merging oftwo verti
es' deal with the fa
t that one obje
t may be the referen
e for di�erentverti
es. With these rules it is possible to transform every 
on
ept graph into anequivalent graph in whi
h no 
ut interse
ts a relation line. More pre
isely:De�nition 11. A 
on
ept graph is 
alled free of interse
tions, if it ful�lls thefollowing 
ondition: 8e2E 8v2V : v 2 Ve =) 
ut(v) = 
ut(e)It follows from the rules `merging two verti
es' and `reverse merging of two ver-ti
es' that every 
on
ept graph is equivalent to a graph free of interse
tions. Andthese graphs are easy to read: They have a form whi
h is 
losely related to theexistential graphs without lines of identity, and the soundness and 
ompletenessof the �rst �ve rules 
on
erning existential graphs 
an be applied now. This leadsto the following essential theorem:Theorem 1 (soundness and 
ompleteness of the 
al
ulus).Two nonexistential, simple 
on
ept graph G1, G2 with 
uts over A satisfyG1 ` G2 () G1 j= G2

5 Future WorkHow to pro
ede with this work is 
lear. First the approa
h has to be extendedto in
lude graphs with generi
 markers. The �-operator for these graphs has tobe elaborated and it has to be proven that simple 
on
ept graphs with negationovals and identity are equivalent to �rst order logi
. In part, this has alreadybeen done (e.g. [BMT98℄). Afterwards, the approa
h should be extended to thenested 
ase. It seems reasonable that nested graphs are equivalent to a 
ertain
lass of formulas of modal logi
 in su
h a way that nestings will be interpreted asdi�erent possible worlds, whi
h are 
onne
ted by the stru
ture of the nestings.And again, a semanti
s and a sound and 
omplete 
al
ulus have to be developed.Referen
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