
Query Graphs with Cuts:
Mathematical Foundations

Frithjof Dau

Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, D-64289 Darmstadt, dau@mathematik.tu-darmstadt.de

Abstract. Query graphs with cuts are inspired by Sowa’s conceptual graphs,
which are in turn based on Peirce’s existential graphs. In my thesis ‘The
Logic System of Concept Graphs with Negations’, conceptual graphs are
elaborated mathematically, and the cuts of existential graphs are added to
them. This yields the system of concept graphs with cuts. These graphs
correspond to the closed formulas of first order predicate logic. Particularly,
concept graphs are propositions which are evaluated to truth-values. In this
paper, concept graphs are extended to so-called query graphs, which are
evaluated to relations instead. As the truth-values TRUE and FALSE can
be understood as the two 0-ary relations, query graphs extend the expres-
siveness of concept graphs.

Query graphs can be used to elaborate the logic of relations. In this sense,
they bridge the gap between concept graphs and the Peircean Algebraic
Logic, as it is described in Burch’s book ’A Peircean Reduction Thesis’. But
in this paper, we focus on deduction procedures on query graphs, instead
of operations on relations, which is the focus in PAL. Particularly, it is
investigated how the adequate calculus of concept graphs can be transferred
to query graphs.

1 Introduction and Overview

At the dawn of modern logic, two important diagrammatic systems for mathemat-
ical logic have been developed. One of them is Frege’s Begriffsschrift. The ideas
behind the Begriffsschrift had an influence on mathematics which can hardly be
underestimated, but the system itself had never been used in practice. The other
diagrammatic system are Peirce’s existential graphs, which are unfortunately not
known by many mathematicians. Nonetheless, a lot of research has been done on
existential graphs, and they have influenced other diagrammatic systems as well.
Among these, Sowa’s system of conceptual graphs, which are based on Peirce’s
existential graphs and the semantic networks of artificial intelligence. is the most
important. Their purpose is ‘to express meaning in a form that is logically precise,
humanly readable, and computationally tractable’ (see [30]). In fact, conceptual
graphs yield a powerful diagrammatic system with a higher expressiveness than
existential graphs. But a closer observation shows that their definitions lack (math-
ematical) preciseness, which leads to several ambiguities, gaps and flaws (see [7]).

In order to fix these gaps and flaws, a mathematical elaboration of conceptual
graphs is appropriate. Wille, who is like Sowa strongly influenced by the philosophy
of Peirce, introduced in [37] an approach for such an elaboration, combining Sowa’s
graphs and his theory of Formal Concept Analysis. The resulting graphs are called
concept graphs (and they are a crucial part of Wille’s Contextual Logic, see [36, 38]).
Until today, several systems of concept graphs with different kinds of negations,
quantifiers etc. have been developed (an overview of these systems can be found

in [10]). The system which will be used in this paper are the concept graphs with
cuts (CGwCs), which have the expressiveness of first order predicate logic and are
studied in detail by the author in [7].

Let us consider an example for existential graphs and concept graphs with cuts:

cat maton on mat: *cat: Yoyo *CATHOLIC: adore WOMAN: *

Fig. 1. An existential graph, a similar concept graph and a second concept graph

The leftmost graph is an existential graph with the meaning ‘there is a cat which is
not on any mat’. It is composed of predicates of different arities (cat, on, mat), so-
called lines of identity which stand for objects and which are drawn bold, and finally
of closed curves, so-called cuts, which are used to negate the enclosed subgraph.

The graph in the middle is a concept graph with cuts. Instead of lines of identity,
concept boxes are used. These boxes contain a concept name and a referent. The
star ‘∗’ is a special referent called generic marker. It can be understood as an
object which is not further specified (similar to a variable in first order logic which
is existentially quantified, or similar to a wildcard in computer systems). Besides
the generic marker, object names are allowed as referents as well. The ovals between
concept boxes represent relations between the referents of the concept boxes. The
cuts of existential graphs appear in concept graphs with cuts as well (as the name
says). But now, as they should not be confused with relation ovals, they are drawn
bold. The meaning of this graph is ”Yoyo is a cat and it is not true that there is a
mat such that Yoyo is on this mat”, or ‘the cat Yoyo is not on any mat’ for short.

On the right, we have a slightly more complex concept graph with cuts. As in
existential graphs, it is allowed to iterate or nest the cuts (but cuts may not overlap).
The meaning of this graph is ”it is not true that there is a catholic, but there is no
woman this catholic adores”, or ”every catholic adores some woman” for short.1

Existential graphs and concept graphs are a diagrammatic form of propositions.2 It
is well known that Peirce developed a logic of relations as well, and the graphical
notation of existential graphs can be used for describing relations as well. Burch
elaborated in his book ‘A Peircean Reduction Thesis’ ([2]) Peirce’s algebra of rela-
tions, the so-called Peircean Algebraic Logic (PAL). But, although the development
of PAL is driven by the diagrammatic representation of relations, Burch developed
a linear notion for PAL and explains not until the last chapter of his book how
this linear notion is related to its diagrammatic representation. For the framework
of Contextual Logic and inspired by the work of Burch, Pollandt and Wille in-
vented and investigated the so-called relation graphs which represent relations (see
[20, 21, 39]). The left graph of Fig. 2 is a relation graph describing the relation
is stepmother of.

The free (or, in other words, unsaturated) valences of the relation correspond to
so-called pending edges of the relation graphs, which are drawn as labelled lines of
identity (see [21]). For concept graph with cuts, a small syntactical extension allows
us to represent free valences of a relation: In addition to object names and the generic

1 This example is adopted from Peirce.
2 More precisely: Of judgements, which are asserted propositions. But this distinction

shall not be discussed here.

mother_of

father_ofmarried_with

malefemale
1

1
1

1

1

2

2

21 2
married_with male: * father_offemale: ?1 1 212

21 mother_of

: ?2

Fig. 2. A relation graph and the corresponding query graph

marker, numbered question marks called query markers are allowed to be referents
of concept boxes. The resulting graphs are termed query graph with cuts (QGwCs).
The right graph of Fig. 2 is therefore a QGwC. It describes the relation of all pairs
of objects (o1, o2), which can replace the query markers ?1 and ?2, respectively, such
that we obtain a valid concept graph (the concept name > denotes the universal
concept which contains every object –of the respective universe of discourse– in its
extension).

Pollandt and Wille focus on operations on relation graphs, that is, they are interested
in the algebra of relations. In contrast to that, we consider derivations on graphs,
i.e., our focus is the logic of relations. This logic will be elaborated in the following
sections. In the first section, the basic definitions for query graphs with cuts are
provided. In the next section, we describe a direct extensional semantics for query
graphs. In Sec. 4, it is investigated how the calculus for concept graph with cuts can
be extended for query graphs. In Sec. 5, the class of query graphs is restricted so that
they better fit to the relation graphs of Burch, Pollandt and Wille. This requires
further investigations on the calculus. Finally, an outlook for further research is
given.

2 Basic Definitions for Query Graphs

As discussed in the introduction, a drawback of conceptual graphs is a lack of mathe-
matical preciseness, which leads to ambiguities and flaws in the system of conceptual
graphs. The purpose of query graphs with cuts is to elaborate a diagrammatic sys-
tem for the mathematical logic of relations. This elaboration is done as usual in
mathematical logic, that is: We have to provide a syntax for the graphs, a seman-
tics, and a calculus which is sound and complete. Particularly, syntax, semantics,
and the calculus have to be defined mathematically.

Not every reader will be familiar with the use of mathematical notions. Moreover,
due to space limitations, it is impossible to provide all definitions, or even proofs
of the following theorems, in this paper. For this reason, the paper is structured
as follows: In this section, the necessary mathematical definitions for the syntax of
QGwCs are given, and it is explained why these definitions capture the intuition
behind QGwCs, so that readers who are not trained in reading mathematical defi-
nitions hopefully get an idea how these definitions work. In the following sections,
mathematical notations are avoided as much as possible. For those readers who are
interested in the mathematical theory behind this paper, an extended version of it
is provided at the homepage of the author (see the remarker after the bibliography)
which contains all further definitions and proofs.

We start with the definition of the underlying structures of concept graphs with
cuts and query graphs with cuts. The examples in Fig. 1 and Fig. 2 show that these
graphs are ”networks” of boxes, relation ovals, and cuts. We see that relation ovals
”connect” the boxes (but we have no direct connection of boxes). The boxes and
relation ovals are ”grouped” by cuts, i.e., cuts contain boxes and relation ovals.
Cuts may even contain other cuts, as the last example of Fig. 1 shows, but tey may

not intersect. Besides the boxes, relation ovals, and cuts, it is convenient to add
the so-called sheet of assertion, i.e., the plane where the diagram is written on, as a
further element (e.g., this gives us the possibility to say that each box, relation oval,
or cut is contained by exactly one cut or the sheet of assertion). These conditions
will be captured mathematically by the following definition.

Definition 1 (Relational Graphs with Cuts).

A structure (V,E, ν,>, Cut, area) is called a relational graph with cuts3 if

1. V , E and Cut are pairwise disjoint, finite sets whose elements are called ver-
tices, edges and cuts, respectively,

2. ν : E → ⋃
k∈NV

k is a mapping4,
3. > is a single element with > /∈ V ∪ E ∪ Cut, called the sheet of assertion, and
4. area : Cut

.
∪ {>} → P(V ∪ E ∪ Cut) is a mapping such that5

a) c1 6= c2 ⇒ area(c1) ∩ area(c2) = ∅ ,
b) V ∪ E ∪ Cut =

⋃
d∈Cut∪{>} area(d),

c) c /∈ arean(c) for each c ∈ Cut
.
∪ {>} and n ∈ N (with area0(c) := {c} and

arean+1(c) :=
⋃
{area(d) | d ∈ arean(c)}).

For an edge e ∈ E with ν(e) = (v1, . . . , vk) we set |e| := k and ν(e)
∣∣
i

:= vi.
Sometimes, we also write e

∣∣
i

instead of ν(e)
∣∣
i
, and e = (v1, . . . , vk) instead of ν(e) =

(v1, . . . , vk). We set E(k) := {e ∈ E | |e| = k}.
As for every x ∈ V ∪ E ∪ Cut we have exactly one context c ∈ Cut

.
∪ {>} with

x ∈ area(c), we can write c = area−1(x) for every x ∈ area(c), or even more simple
and suggestive: c = cut(x).

In particular the empty graph, i.e. the empty sheet of assertion, exists. Its form is
G∅ := (∅, ∅, ∅,>, ∅, ∅).
Def. 1 is an abstract definition of graphs which does not try to capture any graphical
properties of the diagrams. Instead, the diagrams have to be understood as graphical
representations of the graphs (a discussion of the distinction between graphs and
their representations can be found in [8] and [14]). An example for a relational graph
with cuts and its representation will be provided after the next definition.

In contrast to linear notations of logic, there is no need to define the graphs induc-
tively. Nonetheless, similar to formulas, relational graphs bear a inner structure. A
context c of a relational graph with cuts may contain other cuts d in its area (i.e.
d ∈ area(c)), which in turn may contain further cuts, etc. It has to be expected
that this idea induces an order ≤ on the contexts which should be a tree, having the
sheet of assertion > as greatest element. The next definition is the mathematical
implementation of this idea.

Definition 2 (Ordering on Contexts and Enclosing Relation).

Let (V,E, ν,>, Cut, area) be a relational graph with cuts. We define a mapping
β : V ∪ E ∪ Cut

.
∪ {>} → Cut

.
∪ {>} by

β(x) :=
{

x for x ∈ Cut
.
∪ {>}

cut(x) for x ∈ V ∪ E ,

3 Please do not mistake relation graphs and relational graphs.
4 We set N := {1, 2, 3, . . .} and N0 := N ∪ {0}.
5 The sign

.
∪ denotes the disjoint union.

and we set x1 ≤ x2 :⇐⇒ ∃n ∈ N0.β(x1) ∈ arean(β(x2)) In order to avoid misun-
derstanding, we set x < y :⇐⇒ x ≤ y ∧ y 6≤ x and x � y :⇐⇒ x ≤ y ∧ y 6= x.

Every element x of V ∪ E ∪ Cut
.
∪ {>} with x < c is said to be enclosed by c,

and vice versa: c is said to enclose x. For every element of area(c), we say more
specifically that it is directly enclosed by c.

Let n := |{c ∈ Cut |x ∈ ≤[c]}|. If n is even, x is said to be evenly enclosed, otherwise
x is said to be oddly enclosed.

The sheet of assertion > and each oddly enclosed cut is called a positive context,
and each an evenly enclosed cut is called negative context.

As it has been shown in [7], we get the following lemma:

Lemma 1. For a relational graph with cuts (V,E, ν,>, Cut, area), ≤ is a qua-
siorder. Furthermore, ≤ |Cut .∪{>} is an order on Cut

.
∪ {>} which is a tree with the

sheet of assertion > as greatest element.

The ordered set of contexts (Cut
.
∪ {>} , ≤) can be considered to be the ‘skeleton’

of a relational graph. For linear notions of logic, where the well-formed formulas are
defined inductively, many proofs are carried out inductively over the construction
of formulas. Although graphs are not defined inductively, Lem. 1 now allows us to
do inductive definitions and proofs as well.

Of course the preceding lemma is not surprising: It had to be expected. But as
the results, which are clear from a naive understanding of concept graphs, can be
proven, the lemma indicates that Def. 1 and Def. 2 are a ‘correct’ mathematization
of the underlying structure of query graphs with cuts.

The following figure provides a simple example for the last definitions. In the first
two lines, a relational graph with cuts G is defined (of course, {v1, v2}, {e,e2}
,{c1, c2}, {>} are disjoint sets with v1 6= v2, e1 6= e2 and c1 6= c2)). Below, a
graphical representation of G and of its order ≤ is depicted.

G := ({v1, v2}, {e1, e2}, {(e1, (v1)), (e2, (v1, v2))},>, {c1, c2, c3},
{(>, {c1}), (c1, {v1, c2, c3}), (c2, {e1}), (c3, {v2, e2})})

e
c

v2v1

c1

e1 2
c2 1

>

c1, v1

@@��
c2, e1 c3, v2, e2

As this example shows, the vertices are usually drawn as boxes, and edges are
drawn as ovals. For an edge e = (v1, . . . , vn), each concept box of the incident
vertices v1, . . . , vn is connected by a line to the relation oval of e. These lines are
numbered 1, . . . , n. If it cannot be misunderstood, this numbering is often omitted.
There may be graphs such that its lines cannot be drawn without their crossing
one another. In order to distinguish such lines from each other, Peirce introduced a
device he called a ‘bridge’ or ‘frog’ (see [24], p. 55). But, except for bridges between
lines, all the boxes, ovals, and lines of a graph must not intersect. Finally, a cut is
drawn as a closed curve (usually an oval) which exactly contains in its inner space
all the concept boxes, ovals, and curves of the vertices, edges, and other cuts, resp.,
which the cut encloses (not necessarily directly). In order to distinguish the curves
of cuts from relation ovals, they are drawn bold.

In our example, the cut c1 is directly enclosed by the sheet of assertion >, the cuts
c2, c3 and the vertex v1 are directly enclosed by the cut c1, the edge e1 is directly
enclosed by the cut c2, and v2 and e2 are directly enclosed by the cut c3.

The following graph represents another relational graph with cuts:

In this graph, we have an edge with a incident and deeper nested vertex. In the
semantics for QGwCs, it will turn out that graphs with this property may cause
troubles (we will come back to this point in Sec. 3). Thus, we have to forbid graphs
of this kind. This is captured by the following definition:

Definition 3 (Dominating Nodes).

If cut(e) ≤ cut(v) (⇔ e ≤ v) for every e ∈ E and v ∈ Ve, then G is said to have
dominating nodes.

Now QGwCc are be obtained from relational graphs by additionally labelling the
vertices and edges with names for objects, concepts, and relations. We first define
the underlying alphabet for our graphs, then QGwCs are defined.

Definition 4 (Alphabet).

An alphabet is a triple A := (G, C,R) of disjoint sets G, C, R such that

– G is a finite set whose elements are called object names,6

– (C,≤C) is a finite ordered set with a greatest element > whose elements are
called concept names, and

– (R,≤R) is a family of finite ordered sets (Rk,≤Rk), k = 1, . . . , n (for an n ∈ N)
whose elements are called relation names. Let .=∈ R2 be a special name which
is called identity.

On G
.
∪ {∗} we define an order ≤G such that ∗ is the greatest element G

.
∪ {∗}, but

all elements of G are incomparable.

Definition 5 (Query Graphs with Cuts).

A structure G := (V,E, ν,>, Cut, area, κ, ρ) is called query graph with cuts over
the alphabet A, when

– (V,E, ν,>, Cut, area) is a relational graph with cuts that has dominating nodes,
– κ : V ∪E → C ∪R is a mapping such that κ(V) ⊆ C, κ(E) ⊆ R, and all e ∈ E

with |e| = k satisfy κ(e) ∈ Rk, and
– ρ : V → G

.
∪ {∗}

.
∪ {?i | i ∈ N} is a mapping such that there exists a natural

number ar(G) ∈ N0 with {i | ∃v ∈ V with ρ(v) =?i} = {1, . . . , ar(G)}. The
number ar(G) is called the arity of G .

If ar(G) = 0, then G is called concept graph with cuts over the alphabet A.

For the set E of edges, let Eid := {e ∈ E |κ(e) = .= } and Enonid := {e ∈ E |
κ(e) 6= .= }. The elements of Eid are called identity-links. Moreover we set V ∗ :=
{v ∈ V | ρ(v) = ∗}, V ? := {v ∈ V | ρ(v) =?i, i ∈ N}, and V G := {v ∈ V | ρ(v) ∈ N}.
The nodes in V ∗ are called generic nodes, the nodes in V ? are called query nodes,
and the nodes in V G are called object nodes.

6 The letter G stands for the German word ‘Gegenstände’, i.e., ‘objects’. This letter will
recur when we define formal contexts where we have a set G of objects.

In the following, the alphabet is considered to be fixed, thus we simply speak of
’query graphs with cuts’. As already done, the terms ‘concepts graph with cuts’ and
‘query graph with cuts’ will be abbreviated by CGwC and QGwC, respectively.

For the graphical representation of QGwCs, the underlying relational graph is drawn
as explained above. Now, inside the rectangle for a vertex v, we write first the
concept name κ(v) and then the referent ρ(v), separated by a colon. As already
done, these rectangles are called concept boxes (this graphical notation is used in
continuous text, too, e.g. we will write ‘let v := P : g ’ instead of ‘let v be a vertex
with κ(v) = P ∈ C and ρ(v) = g ∈ G’). Analogously, for an edge e, we write its
relation name κ(e) into the representing oval. These ovals are called relation ovals.

3 Contextual Semantics

For the most kinds of mathematical logic, a semantics in form of extensional models
is provided. Particularly, for first order logic, the extensional models are relational
structures M := (U, I), consisting of a universe (of discourse) U and a function
I, which assigns objects, relations and functions in U to the object-, relation- or
function-names of the alphabet. If mathematical logic is done with diagrams, there
is often no direct extensional semantics provided (see for example [28, 41]). Instead,
a translation from the graphs to first order logic is given, so that the models of first
order logic serve indirectly as models for the graphs as well.

Formulas and graphs are very different ’styles’ of logic, thus it seems a little bit
awkward and unappropiate that the semantics, i.e., meaning, of graphs can only be
gained indirectly via first order logic. Therefore, this approach is not adopted here,
but a direct semantics for graphs is provided. This will be done in the following
subsections.

3.1 Contextual Models

The semantics used here is a so-called contextual semantics, which is based on
Formal Concept Analysis (FCA). This semantics was introduced by Wille in [37],
and a comprehensive mathematical elaboration of FCA be found in [11]. The basic
structure of FCA are formal contexts. Roughly speaking, a formal context K is a
cross-table, fixing a set of objects G and a set of attributes M , and an incidence-
relation I between these sets, indicating that an object g has an attribute m. In
order to describe relations between objects, so-called power context families (PCFs)
are introduced. A PCF is a family (K0,K1,K2, . . . ,Kn) of formal contexts such that
the objects in the context Ki, i ≥ 1 are tuples of the objects of K0.

In Fig. 3, an example of a PCF is depicted. It describes the working group of the
author. The objects are the members of the working group (e.g., ‘RW’ stands for
‘Rudolf Wille’, the inventor of FCA and the advisor of the author, and ‘FD’ stands
for the author himself). The meaning of the attributes is obvious (the attribute >
in K0 is used for the universal concept, which has already been mentioned in the
introduction, the attribute .= in K2 is the identity).

For this paper, only the basic notions of FCA and of contextual structures are
provided.

Definition 6 (Formal Contexts and Power Context Families).

A formal context is a triple K := (G,M, I), where G is a set of (formal) objects,
M is a set of (formal) attributes and I ⊆ G ×M is an incidence-relation. A pair

K0 m
a
le

fe
m

a
le

D
ip

lo
m

a

P
h
D

P
ro

f.

RW × × × ×
PB × × × ×
RH × × ×
FD × × ×
JK × ×
BV × ×

JHC × ×
LS × ×

TK × ×
BW ×

K2 A
d
v
is

o
rO

f
C

o
A

u
th

o
rO

f

.
=

(RW,FD) × ×
(RW,JK) ×
(RW,BV) × ×
(RW,JHC) × ×
(RW,TK) ×
(RW,BW) ×
(RW,LS) × ×
(PB,RH) × ×
(FD,RW) ×
(FD,JK) ×
(JK,FD) ×

(FD,JHC) ×
(JHC,FD) ×

...
...

...
...

...
...

...
...

(BV,RW) ×
(JHC,RW) ×
(JHC,JK) ×
(JK,JHC) ×
(BV,JK) ×
(JK,BV) ×
(LS,RW) ×
(RW,RW) ×
(PB,PB) ×
(RH,RH) ×
(FD,FD) ×
(JK,JK) ×
(BV,BV) ×

(JHC,JHC) ×
(TK,TK) ×
(BW,BW) ×

Fig. 3. An example of a power context family

(A,B) with A ⊆ G and B ⊆M is called a formal concept of K, if and only if A =
{g ∈ G | gIn for all b∈B} and B = {m ∈ M | aIm for all a∈A}. Ext(A,B) := A
is called extension of the concept (A,B), and Int(A,B) := B is called intension of
the concept (A,B). The set of all formal concepts of a formal context K is denoted
by B(K) .

A family ~K := (K0,K1,K2, . . .) of contexts Kk := (Gk,Mk, Ik) that satisfies G0 6= ∅
and Gk ⊆ (G0)k for each k ∈ N is called power context family. The elements of
G0 are the objects of ~K. All elements of

⋃
k∈N0

B(Kk) are called concepts. We
set furthermore R~K :=

⋃
k∈NB(Kk), and the elements of R~K are called relation-

concepts.

When interpreting a concept graph in a power context family, the object names of
our alphabet will be interpreted by objects, the concept names of our alphabet will
be interpreted by formal concepts of the context K0, the relation names of arity k
will be interpreted by relation-concepts of Kk, and this interpretation has to respect
the orders on the names. This motivates the following definition:

Definition 7 (Contextual Models).

Let A := (G, C,R) be an alphabet and ~K be a power context family. Then we call the
disjoint union λ := λG ∪̇λC ∪̇λR of the mappings λG :G → G0, λC : C → B(K0) and
λR:R → R~K a ~K-interpretation of A if λC and λR are order-preserving, and λC , λR
satisfy λC(>) = >, λR(Rk) ⊆ B(Kk) for all k = 1, . . . , n, and (g1, g2) ∈ Ext(λR(.=
))⇔ g1 = g2 for all g1, g2 ∈ G0. The pair (~K, λ) is called contextual model over A
or contextual structure over A.7

The mappings on V can naturally be extended to mappings on E. Moreover, as λG
is a mapping on the set G of object names, it can be naturally extended to tuples
of object names. In particular we set λG(ρ(e)) := (λG(ρ(v1)), . . . , λG(ρ(vn))).
7 The name ‘contextual structure’ is chosen according to the term ‘relational structure’.

Contextual structures can be considered to be an extension of relational structures.
Roughly speaking: If we remove all the intensional information from a contextual
structure, we obtain a relational structure. More precisely: Let (~K, λ) be a contextual
structure. Then, for U := G0, IG(g) := λG(g) for all g ∈ G, IC(C) := Ext(λC(C))
for all C ∈ C and IR(R) := Ext(λR(R)) for all R ∈ R, it is easy to see that the
relational structure (U, IG

.
∪ IC

.
∪ IR) corresponds to (~K, λ). Hence, for readers who

are not familiar with Formal Concept Analysis, the results of this paper can easily
be transferred to relational structures.

As contextual structures bear a richer structure than relational structures, it has
to be argued why we do not simply use the relational structures in our semantics.
As Wille says in [37]: ‘ There is a fundamental reason for associating concept(ual)
graphs and Formal Concept Analysis which lies in their far-back reaching roots in
philosophical logic and in their pragmatic orientation; more specifically, both to-
gether can play a substantial role in the formalization of (elementary) logic. [. . .]
Elementary logic was understood and taught by the traditional paradigm of philo-
sophical logic based on the three essential main functions of thinking – concepts,
judgements and conclusions.’ A formalization of this understanding of logic is an
adequate approach for knowledge representation and processing, which is a main
goal of concept(ual) graphs and query graphs. The formalization of concepts, par-
ticularly the understanding of a concept as a unit of thought constituted by its
extension and intension, has been successfully established by Formal Concept Anal-
ysis. A crucial point is that the extension and intension of a concept can only be
grasped in a fixed universe of discourse, which is formalized as a so-called formal
context. Due to this contextual view, the semantics which is presented here is called
contextual semantics. In the line of the philosophical understanding of logic, con-
cept graphs can be understood as a formalization of judgements, and the deductive
procedures on concept graphs can be understood as a formalization of conclusions.
For a deeper discussion on this topic, we refer to [37].

3.2 Evaluation of Graphs in Contextual Models

The evaluation of a graph in a contextual structure shall be explained with some
examples. Consider G1 of the next two graphs:

G1 := *PROF: male G2 := Coauthor of

Coauthor of*: *:1

2

2

1

The evaluation of G1 starts on the sheet of assertion > and proceeds inwardly (this
is the so-called endoporeutic method of Peirce for existential graphs). As only the
outermost cut (let us call it c1) is directly enclosed by >, we know that G is true
if the subgraph which is enclosed by c1 is false. This subgraph contains a vertex v
and a further cut c2. We now have: G is true if it is not true that there exists an
object o such that o is a professor and the proposition enclosed by c2 is false. Now
we have to evaluate the area of c2. This area contains only one edge, and the unary
relation of this edge refers to the object o. Hence G is true if there is no professor
such that this professor is not male. In simpler words: Every professor is male. This
proposition is true in our given contextual structure.

Similarly, the meaning of the right graph is ‘it is not true that there are two objects
o1, o2 such that o1 is the8 advisor of of o2, but o2 is not a co-author of o1’. In other
8 More precisely, we should write ‘an advisor’ instead of ‘the advisor’

words: Each advisor of a person is a co-author of that person as well. In our given
contextual structure, this proposition is false.

Now it can be explained why we forced the graphs to have dominating nodes.
Consider the next two graphs, where the right graph has no dominating nodes:

*PROF: *PROF: male

The meaning of the left graph is clear: ‘It is not true that there is a professor’. Partic-
ularly, the generic marker is existentially quantified (‘there is’), and this quantifica-
tion takes places inside the cut. But now, if we try to read the right graph inwardly,
we have to evaluate the edge labelled with ‘male’, which refers to the object of
the concept box inside the cut. Therefore, the ‘place’ of the existential quantifica-
tion moves outside the cut, i.e., scope of the generic marker has to be extended to
the sheet of assertion. This is possible, but it makes the reading of CGwCs very
complicated. Therefore, graphs like this are not allowed. (A more comprehensive
discussion of dominating nodes can be found in [7].)

The semantics which has been exemplified so far is the semantics for CGwCs, as it
is described in [7]. This semantics can naturally be extended for QGwCs. Consider
the following two QGwCs:

: ?1 Coauthor offemale 1 2 : FD
Coauthor of

Advisor of
: ?1 : ?1

1 2

1 2

In contrast to CGwCs, QGwCs are not a formalization of propositions, but their
evaluation in a contextual structure model yield relations. The idea is simple: For
a given contextual structure, a QGwC of arity n (i.e., it contains query markers
?1, . . . , ?n) describes the relation of all n-tuples (o1, . . . , on) of objects which can re-
place the query markers ?1, . . . , ?n, respectively, such that we obtain a valid concept
graph for M.

The first graph can be understood to be the following query: ‘Give me all persons9

which are female and which are a co-author of FD’, or ‘give me all female co-authors
of FD’ for short. In our example, we obtain only one person, namely JK.

The second graph can be understood to be the following query: ‘Give me all pairs
of persons such that the first person is the advisor, but not a co-author, of the
second person.’ In our example, we obtain the following set of pairs: {(RW,JK),
(RW,TK), (RW,BW)}.
Now we are prepared for the mathematical definitions of the evaluation QGwCs.
When an QGwC is evaluated in a contextual structure (~K, λ), we have to assign
objects of our universe of discourse G0 to its generic markers. These assignments
are done by valuations. Valuations do not need to be total, i. e. we will consider
valuations where we assign values only to a subset of V . Nevertheless, it is clear
that we will assign to each vertex v ∈ V G the object λ(ρ(v)). Moreover, for a fixed
i ∈ N, all vertices v with ρ(v) =?i shall of course denote the same object.

Furthermore, we want to define specific partial valuations for contexts. Assume we
want know which relations can be assigned to the query vertices in a context such
that the context evaluates to true or false in a given model. Then we need to know
which objects are assigned to vertices above the context, but, on the other hand, we
should not have assigned objects yet to generic vertices which are enclosed by the
9 More formally, we should write ‘object’ instead of ‘person’.

context. This will be done by partial valuations. Finally, we will distinguish between
open partial valuations, which do not assign object to any query vertices, and closed
partial valuations, which assign objects to all query vertices.

Definition 8 (Partial and Total Valuations).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a QGwC and let M := (~K, λ) be a model.
A mapping ref : V ′ → G0 is called partial valuation of G, iff V G ⊆ V ′ ⊆ V ,
ref(v) = λ(ρ(v)) for all v ∈ V G, and if v1, v2 ∈ V ? with ρ(v1) = ρ(v2) =?i for an
i ∈ N, then ref(v1) = ref(v2). If furthermore V ′ ∩V ? = ∅, then ref is called open,
and if V ′ ⊇ V ?, then ref is called closed.

If c is a context such that V ′ ⊇ {v ∈ V ∗ | v > c} and V ′ ∩ {v ∈ V ∗ | v ≤ c} = ∅,
then we say that ref is a partial valuation for the context c. If V ′ = V , then ref
is called (total) valuation of G.

Now let ref be an open partial valuation, and for 1 ≤ i ≤ ar(G), let gi be an element
of G0. Then let ref [g1, . . . , gar(G)] : dom(ref) ∪ V ? → G0 be the partial valuation
which extends ref and which satisfies ref [g1, . . . , gar(G)](v) = gi for each v ∈ ∩V ?

with ρ(v) =?i.

Now we can define how a QGwC is evaluated in a contextual model. As mentioned
above, the provided evaluation method is adopted from the endoporeuteic method of
Peirce to evaluate existential graphs. Its mathematical implementation for QGwCs
is as follows:

Definition 9 (Endoporeutic Evaluation of Graphs).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be an QGwC and (~K, λ) be a contextual model
over A. Inductively over the tree Cut

.
∪ {>}, we define (~K, λ) |= G[c, ref] for each

context c ∈ Cut
.
∪ {>} and every closed partial valuation ref : V ′ ⊆ V → G0 for c:

(~K, λ) |= G[c, ref] :⇐⇒

ref can be extended to a partial valuation r̃ef : V ′∪(V ∩area(c))→ G0,
such that the following conditions hold:

– r̃ef(v) ∈ Ext(λC(κ(v))) for each v ∈ V ∩ area(c) (vertex condition)
– r̃ef(e) ∈ Ext(λR(κ(e))) for each e ∈ E ∩ area(c) (edge condition)
– (~K, λ) 6|= G[d, r̃ef] for each d ∈ Cut ∩ area(c) (cut condition and

iteration over Cut
.
∪ {>})

Now let ref∅ be the empty valuation. We set:

RM,G := {(g1, . . . , gar(G)) |M |= G[ref∅[g1, . . . , gar(G)]]}

Finally, let Ga,Gb be to QGwCs with arity n. We set

Ga |=n Gb :⇐⇒ for all contextual models M we have RM,Ga ⊆ RM,Gb

According to the discussion above, this definition (namely the edge condition) relies
on the condition that we consider concept graphs with dominating nodes.

It should be noted that this definition extends the definition given in [7] for concept
graphs with cuts, which are evaluated to one of the truth-values TRUE and FALSE
in models: If G is a concept graph with cuts, then RM,G is one of the 0-ary relations
{} and {{}}. The relation {} can be interpreted as FALSE, the relation {{}} can
be interpreted as TRUE. Then

M |= G⇐⇒ RM,G = {{}} and Ga |= Gb ⇐⇒ Ga |=0 Gb

for concept graphs G,Ga,Gb and contextual models M.

4 Calculus

In [7], a sound and complete calculus for concept graphs with cuts is provided.
This calculus is a based on Peirce’s calculus for the beta part of existential graphs,
which is here extended in order to capture the syntactical differences and the higher
expressiveness of concept graph with cuts. As we can nearly adopt this calculus for
QGwCs, we repeat it here, using common spoken language. For the mathematical
definitions of the rules, we refer to [7].

Definition 10 (Calculus for Concept Graphs with Cuts). .

The calculus for concept graphs with cuts over the alphabet A := (G, C,R) consists
of the following rules:

– erasure
In positive contexts, any directly enclosed edge, isolated vertex, and closed sub-
graph may be erased.

– insertion
In negative contexts, any directly enclosed edge, isolated vertex, and closed sub-
graph may be inserted.

– iteration
Let G0 := (V0, E0, ν0,>0, Cut0, area0, κ0, ρ0) be a (not necessarily closed) sub-
graph of G and let c ≤ cut(G0) be a context such that c /∈ Cut0. Then a copy of
G0 may be inserted into c. For every vertex v ∈ V ∗0 with cut(v) = cut(G0), an
identity-link from v to its copy may be inserted.

– deiteration
If G0 is a subgraph of G which could have been inserted by rule of iteration,
then it may be erased.

– double cuts
Double cuts (two cuts c1, c2 with area(c1) = {c2}) may be inserted or erased.

– generalization
For evenly enclosed vertices and edges, their concept names or object names
resp. their relation names may be generalized.

– specialization
For oddly enclosed vertices and edges, their concept names or object names resp.
their relation names may be specialized.

– isomorphism
A graph may be substituted by an isomorphic copy of itself.

– exchanging referents
Let e ∈ Eid be an identity link with ρ(e

∣∣
1
) = g1, ρ(e

∣∣
2
) = g2, g1, g2 ∈ G∪{∗} and

cut(e) = cut(e
∣∣
1
) = cut(e

∣∣
2
). Then the referents of v1 and v2 may be exchanged,

i.e., the following may be done: We can set ρ(e
∣∣
1
) = g2 and ρ(e

∣∣
2
) = g1.

– merging two vertices
Let e ∈ Eid be an identity link with ν(e) = (v1, v2) such that cut(v1) ≥ cut(e) =
cut(v2), ρ(v1) = ρ(v2) and κ(v2) = > hold. Then v1 may be merged into v2, i.e.,
v1 and e are erased and, for every edge e ∈ E, e

∣∣
i

= v1 is replaced by e
∣∣
i

= v2.
– splitting a vertex

Let g ∈ G ∪ {∗}. Let v = P : g be a vertex in the context c0 and incident with
relation edges R1, . . . , Rn, placed in contexts c1, . . . , cn, respectively. Let c be a
context such that c1, . . . , cn ≤ c ≤ c0. Then the following may be done: In c, a
new vertex v′ = > : g and a new identity-link between v and v′ is inserted. On
R1, . . . , Rn, arbitrary occurences of v are substituted by v′.

– >-erasure
For g ∈ G∪{∗}, an isolated vertex > : g may be erased from arbitrary contexts.

– >-insertion
For g ∈ G ∪{∗}, an isolated vertex > : g may be inserted in arbitrary contexts.

– identity-erasure
Let g ∈ G, let v1 = P1 : g and v2 = P2 : g be two vertices. Then any identity-
link between v1 and v2 may be erased.

– identity-insertion
Let g ∈ G, let v1 = P1 : g , v2 = P2 : g be two vertices in contexts c1, c2, resp.
and let c ≤ c1, c2 be a context. Then an identity-link between v1 and v2 may be
inserted into c.

A proof in the system of graphs is defined as usual in logic.

Definition 11 (Proof).

Let Ga, Gb be two concept graphs with cuts. Then Gb can be derived from Ga (which
is written Ga ` Gb), if there is a finite sequence (G1,G2, . . . ,Gn) with G1 = Ga

and Gb = Gn such that each Gi+1 is derived from Gi by applying one of the rules
of the calculus. The sequence is called a proof for Ga ` Gb. Two graphs Ga,Gb with
Ga ` Gb and Gb ` Ga are said to be provably equivalent.

The question arises how the calculus for CGwCs can be extended to a calculus for
QGwCs. The basic idea is that query markers can be interpreted as ’generic object
names’. Thus it has to be expected that, if we treat the query markers like object
names, we get an adequate calculus for QGwCs. The definition of the calculus is as
follows:

Definition 12 (Calculus for Query Graphs with Cuts).

The calculus for QGwCs consists of the rules of the calculus for concept graph with
cuts (Def. 10), where

1. the query markers ?i are treated like object names, and
2. an application of a rule to a QGwC Ga := (Va, Ea, νa,>a, Cuta, areaa, κa, ρa)

with arity n is only allowed if it preserves the arity, i.e., for the derived graph
Gb := (Vb, Eb, νb,>b, Cutb, areab, κb, ρb) we have

{i | ∃v ∈ Va with ρ(v) =?i} = {i | ∃v ∈ Vb with ρ(v) =?i} = {1, . . . , n} .

If Ga,Gb are two QGwCs with arity n such that Gb is derived from Ga with this
calculus, we write Ga `n Gb.

In order to show that this calculus is complete (the soundness is obvious), we extend
the alphabet with the query markers and use the completeness of the calculus for
concept graphs with cuts. The extension of the alphabet is defined canonically:

Definition 13 (Extensions of Alphabet and Models).

Let A := (G, C,R) be an alphabet. Let An := (G′, C,R) with G′ := G
.
∪ {?1, . . . , ?n}.10

An is called the query-marker-extension of A. Let M := (
→
K, λ) be a model for A,

let g1, . . . , gn ∈ G0. Then let M[g1, . . . , gn] := (
→
K, λ′) be the model for An with:

λ′ := (λ′G , λC , λR) , where λ′G(c) :=
{
λG(c) for c ∈ G

gi for c = ?i , i ∈ {1, . . . , n}
10 In order to distinguish the object names An from the query markers, they are bold.

IfM is a model for A, thenM′ is obviously an model for An. Moreover, each model
for An is the query-marker-extension of a model for An. Obviously, the QGwCs of
arity n over the alphabet A correspond to the the concept graphs with cuts over the
alphabet An, in which each object name ?n occurs at least once (see the condition
for ρ in Def. 5).

Finally, if ref∅ denotes the empty valuation again, it is easy to see that we have

M |= G[ref∅[g1, . . . , gar(G)]]⇐⇒M[g1, . . . , gn] |= G (1)

Now we obtain the completeness of `n, which is the first main result of this paper.

Theorem 1 (The Calculus for QGwCs is Complete).

The calculus `n is complete.

Proof: Let Ga,Gb be two QGwCs with ar(Ga) = ar(Gb) = n. Then we have:

Ga |=n Gb ⇐⇒ for all models M := (
→
K, λ) over A : RM,Ga ⊆ RM,Gb

⇐⇒ for all models M := (
→
K, λ) over A : ∀g1, . . . , gn ∈ G0 :

M |= Ga[ref∅[g1, . . . , gar(G)]]⇒M |= Gb[ref∅[g1, . . . , gar(G)]]
(1)⇐⇒ for all models M := (

→
K, λ) over A : ∀g1, . . . , gn ∈ G0 :

M[g1, . . . , gn] |= Ga ⇒M[g1, . . . , gn] |= Gb

s.a.⇐⇒ for all models M′ over An :M′ |= Ga ⇒M′ |= Gb

⇐⇒ Ga |= Gb (over An)

As the calculus for concept graphs with cuts is sound and complete, we have a
proof, i.e., a sequence (G1,G2, . . . ,Gk) with G1 = Ga and Gb = Gk, in the system
of concept graphs with cuts over An. In this sequence, there may be graphs in which
not every object name ?i occurs. But the proof can be transformed into a proof
consisting solely of QGwCs with arity n as follows: For each j = 1, . . . , k, let G′j be

the graph obtained from Gj by juxtaposing n vertices > : ?i , i = 1, . . . , n. Then
(G′1,G

′
2, . . . ,G

′
k) is again a proof. Finally, G′1 can be derived from G1 by adding

the n vertices > : ?i with the >-insertion-rule, and Gk can be derived from G′k
by erasing the additional n vertices > : ?i with the >-erasure-rule. This procedure
yields a proof for Ga `n Gb with k + 2n QGwCs of arity n. 2

5 Normed Query Graphs

The relation graphs, as they have been described in the introduction, have some
simple syntactical restrictions which are not adopted for query graphs. If a relation
graph describes a relation of arity n, it has exactly n pending edges (one edge for
each unsaturated valence of the relation), and these pending edges end on the sheet
of assertion. In contrast to that, in a QGwC, a query marker ?i may occur in an
arbitrary number of concept boxes, each of them placed in an arbitrary context. In
the following, we restrict the system of QGwCs in order to get a class of graphs
which corresponds more closely to relation graphs. That is, we consider QGwCs
where each query marker ?i appears only once, namely in a concept box > : ?i
placed directly on the sheet of assertion. These graphs are called normed QGwCs.

They are formally defined as follows:

Definition 14 (Normed Query Graphs).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a QGwC. If we have moreover

1. |{v ∈ V | ρ(v) =?i}| = 1 for each i = 1, . . . , ar(G),
2. ctx(v) = > for each v ∈ V ?, and
3. ρ(v) = > for each v ∈ V ?,

then G is called normed.

We have provided a sound and complete calculus for –not necessarily normed–
QGwCs. It is not obvious whether this calculus is still complete if we restrict it
to the class of normed query graphs. In fact, the rules ’splitting a vertex’ and
’merging two vertices’ have to be slightly extended. Usually, if a vertex v1 := P : g

is split, a new vertex v2 := > : g is inserted. This is captured by the condition

ρ(v1) = ρ(v2) in Def. 10. Note that if we split a query vertex P : ?i with this form
of the rule ‘splitting a vertex’, the derived graph contains (at least) two vertices
with the referent ?i, hence the derived graph is not normed. Thus, in the class of
normed QGwCs, this rule can never be applied. In order to make this rule and the
rule ‘merging two vertices’ usable for the class of normed QGwCs, the condition
ρ(v1) = ρ(v2) is weakened in both rules to ρ(v1) ≤ ρ(v2). That is, we set:

– merging two vertices (extended version)
Let e ∈ Eid be an identity link with ν(e) = (v1, v2) such that cut(v1) ≥ cut(e) =
cut(v2), ρ(v1) ≤ ρ(v2) and κ(v2) = > hold. Then v1 may be merged into v2, i.e.,
v1 and e are erased and, for every edge e ∈ E, e

∣∣
i

= v1 is replaced by e
∣∣
i

= v2.
– splitting a vertex (extended version)

Let g ∈ G ∪ {∗}. Let v = P : g be a vertex in the context c0 and incident with
relation edges R1, . . . , Rn, placed in contexts c1, . . . , cn, respectively. Let c be a
context such that c1, . . . , cn ≤ c ≤ c0. Then the following may be done: In c, a
new vertex v′ = > : g′ with g′ ≥ g and a new identity-link between v and v′ is
inserted. On R1, . . . , Rn, arbitrary occurences of v are substituted by v′.

The calculus obtained from `n (see Def. 12) with the old rules ‘merging two ver-
tices/splitting a vertex’ replaced by its extended versions shall be denoted by `̀n.

First we will show that `̀n is still sound. This will be done be deriving the generalized
rules from the calculus `n. First, we need a simple congruence rule, which can be
stated as follows:

Let G be a QGwC, and let v := P: g be a vertex of G. Let G′ be the graph we

get when we replace v by :*P: g in G. Then G′ and G′ are equivalent.

Note that in this description of the rule, we have only drawn the crucial graph
elements which are needed for the rule. Moreover, in order to indicate that a vertex
of the graph incident with several edges which are not relevant in the proof, we
attach ‘ ’ to the its concept box. Formally, this rule is defined as follows:

Definition 15 (Congruence Rule).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a QGwC, and let v be a vertex of G. Let
G′ := (V ′, E′, ν′,>′, Cut′, area′, κ′, ρ′) be the following graph:

– V ′ := V
.
∪ {v′},

– E′ := E
.
∪ {e′},

– ν′ := ν
.
∪ {e′, (v, v′))},

– >′ := >,
– Cut′ := Cut,
– For c ∈ Cut with c 6= cut(v), we set area′(c) := area(c), and we set
area′(cut(v)) := area(cut(v))

.
∪ {e′, v′},

– ρ′ := ρ\{(v, ρ(v))}
.
∪ {(v′, ρ(v)), (v, ∗)}, and

– κ′ := κ\{(v, κ(v))}
.
∪ {(v′, κ(v)), (v,>)}.

We say that G′ is derived from G by applying the congruence rule to the vertex v.

This rule can be derived from `n, as the following lemma shows.

Lemma 2 (The Congruence Rule can be Derived with `n).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a QGwC, let v ∈ V , v := P : g be a vertex,
and let G′ be derived from G by applying the congruence rule to v. Then we have
G `n G′ and G′ `n G.

Proof: We distinguish whether ctx(v) is a positive or negative context. Like in the
description of the congruence rule, we sketch only the crucial graph elements.

We start with the positive case, with the the direction ‘G `n G′’. The proof is as
follows:

P: g
split.

`n :gP: g
gen.

`n :*P: g

The direction ‘G′ `n G’ is done as follows:

:*P: g
exchg.

`n :*P: g
era.

`n P: g

Now let ctx(v) be negative. The direction ‘G `n G′’ of this lemma is done as follows:

P: g
split.

`n :gP: g

ins.

`n ::* gP: g

2× exchg.

`n : :*P: gg

merge

`n :*P: g

Finally, the direction ‘G′ `n G’ is done as follows:

:*P: g
spec.

`n :gP: g
merg.

`n P: g 2

Please note the following: As in some graphs in the proofs the object name g appears
twice, this proof cannot be applied for normed query graphs, if g =?i for an i ∈ N.

With this congruence rule, we can now prove the generalized versions of the rules
’merging two vertices’ and ’splitting a vertex’.

Lemma 3 (Generalization: Merging Two Vertices, Splitting a Vertex).

In the system of query graphs with cuts, the generalized rules ’merging two ver-
tices’ and ’splitting a vertex’ can be derived from the calculus `n of Definition 12.
Particularly, they are sound.

Proof: Again, we sketch only the crucial graph elements. Moreover, in order to
indicate that, when the rule ‘splitting a vertex is applied to a vertex v, the copy
of v may be placed in a deeper nested cut, we have added a cut segment to the
diagrams.

P: g
cr

`n :*

P: g

split.

`n :* :*

P: g

cr

`n :*P: g

Note that the proof can be carried out in both directions and in arbitrary contexts,
thus we are done. 2

It remains to show that `̀n is a complete calculus for normed QGwCs. In order to
show this, we first assign to each QGwC G a normed QGwC norm(G) as follows:

1. For each i = 1, . . . , ar(G), we add a new vertex v?i := > :?i to the sheet of
assertion.

2. Then, for each vertex v 6= v?i with ρ(v) =?i, an identity link between v?i and v
is added.

3. Finally, for each vertex v 6= v?i with ρ(v) =?i, its reference ?i is replaced by the
generic marker ∗.

The formal definition is as follows:

Definition 16 (norm(G)).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a QGwC with arity n. We assign to G
a normed QGwC norm(G) := (Vn, En, νn,>n, Cutn, arean, κn, ρn) as follows: Let
v?1, . . . , v?n be new vertices. To each v ∈ V ? let ev be a new edge. Now we set

– Vn := V
.
∪ {v?1, . . . , v?n},

– En := E
.
∪ {ev | v ∈ V ?},

– νn := ν
.
∪ {(ev, (v?i, v)) | ρ(v) =?i for an i ∈ {1, . . . , n}},

– >n := >,
– Cutn := Cut,
– For c ∈ Cut we set arean(c) := area(c)

.
∪ {ev | v ∈ V ? ∩ area(c)} and we set

arean(>n) := area(>)
.
∪ {ev | v ∈ V ? ∩ area(>)}

.
∪ {v?1, . . . , v?n},

– ρn := ρ\{(v, ρ(v)) | v ∈ V ?}
.
∪ {(v, ∗) | v ∈ V ?}

.
∪ {(v?i, ?i) | i = 1, . . . , n}, and

– κn := κ
.
∪ {(v?i,>) | i = 1, . . . , n}

.
∪ {(ev,

.=) | v ∈ V ?}.

norm(G) is called the normalization of G.

Example

In the example below, the right graph is the normalization of the left graph.

:*Q1: ?2

Q2: ?2

R

R P: g P2: ?1

P1: ?1S

P3: ?3

:*R S *P1:

: ?1: ?2

P2: *R P: g

Q1: *

Q2: *

: ?3

P3: *

The next lemma shows that G and norm(G) are provably equivalent. But even if
G is a normed QGwC, we do not have G = norm(G). Nonetheless, is is easy to
see that norm(G) can be derived from G by a simple application of the extended
‘splitting a vertex’ rule. Thus, for a normed QGwC G with ar(G) = n, we have
G `̀n norm(G) and norm(G) `̀n G.

Lemma 4 (G and norm(G) are Equivalent).

Let G be a QGwC. Then norm(G) is a normed QGwC which is syntactically equiv-
alent (with `n or `̀n) to G.

Proof: It is obvious that norm(G) is a normed QGwC. Let n := ar(G). Now
norm(G) can be derived from G as follows:

1. First, for each i = 1, . . . , n, a new vertex wi := > : ?i is inserted on the sheet
of assertion with the >-insertion-rule.

2. Then, for each vertex v := P : ?i (i ∈ {1, . . . , n} and v /∈ {w1, . . . , wn}), an
identity-link between v and wi is inserted with the identity-insertion-rule (the
identity link is of course placed in the same context as v).

3. For each vertex v := P : ?i (i ∈ {1, . . . , n} and v /∈ {w1, . . . , wn}), we have
finally to change its referent ?i to the generic marker ∗. This is done by first
merging v into wi, and then this operation is reversed by splitting wi, but when
wi is split, the new vertex has to be P : ∗ instead of P : ?i . 2

As the graphs G and norm(G) are syntactically, and hence, semantically, equivalent,
the class of normed QGwCs has the same expressiveness as the class of QGwCs.

Now let Ga and Gb be two normed QGwCs of arity n with Ga |= Gb. As `n is
complete, we have Ga `n Gb as well. The proof for Ga `n Gb is a sequence of graphs,
but this sequence is a sequence of QGwCs which are not necessarily normed. But
the proof can be transformed into a proof in the class of normed QGwCs, together
with the calculus `̀n. Let us consider an example, where the iteration-rule of `n is
applied to a QGwC (the iterated subgraph G0 is marked by the dashed line):

Ga := P: ?1 Q: g

Q: ?2

it.

`n Q: g

P: ?1

Q: ?2

P: ?1

Q: ?2

=: Gb

We cannot derive norm(Gb) from norm(Ga) by a simple application of the iteration-
rule, but in the class of normed QGwCs, we can construct a proof for norm(Ga) `
`n norm(Gb), which is as follows:

We start with norm(Ga):

Q: g: ?1

: ?2 *

*P:

Q:

The query vertices are split such
that their copies –we will call
them wi– are placed in the con-
text where G0 is iterated into. Q: g: *

: *: ?2

: ?1

*

*P:

Q:

In the derived graph, we have a
subgraph which corresponds G0

(it is marked with dashed lines
in the diagram above). Particu-
larly, this subgraph contains the
vertices wi. Now this subgraph is
iterated, and we insert an iden-
tity link from each each wi to its
copy.

*Q: *Q:

P: *

Q: g

P: *

: * : *

: *: *: ?2

: ?1

Now the copies of the vertices wi
are merged back into their ori-
gins wi.

*Q: *Q:

P: *

Q: g

P: *

: *

: *: ?2

: ?1

Finally, the vertices wi are
merged back into the query ver-
tices. This step yields norm(Gb).

*Q: *Q:

P: *

Q: g

P: *

: ?1

: ?2

The underlying idea of this proof can be carried over to all rules in the calculus `n.
This yields the following theorem:

Theorem 2 (Transformation of `n into `̀n).

Let Ga,Gb be two QGwCs such that Gb is derived from Ga by applying one of the
rules of the calculus `n. Then we have norm(Ga) `̀n norm(Gb), where the proof
contains only normed QGwCs.

Proof: We set

Ga := (Va, Ea, νa,>a, Cuta, areaa, κa, ρa)
Gb := (Vb, Eb, νb,>b, Cutb, areab, κb, ρb)

norm(Ga) := (Vna, Ena, νna,>na, Cutna, areana, κna, ρna)
norm(Gb) := (Vnb, Enb, νnb,>nb, Cutnb, areanb, κnb, ρnb)

Let n be the arity of the graphs. The proof is carried out for each rule of the
calculus separately. Due to the symmetry of the calculus, it is sufficient to prove
the lemma only for one rule of the pairs erasure/insertion, iteration/deiteration,
generalization/specialization, etc.

– erasure and insertion
We only consider the erasure of an closed subgraph, all other cases can be done
analogously.
Let G0 := (V0, E0, ν0,>0, Cut0, area0, κ0, ρ0) be a closed subgraph of Ga which
is erased. Let V ′ := V0 ∩V ?

a . Note that we have in norm(Ga) a subgraph which
corresponds to G0, i.e., it has exactly the same vertices, edges and cuts, only
the referents of the vertices v ∈ V ′ have changed from ?i to ∗. This subgraph
will be denoted G0 as well. Now norm(Gb) can be derived from norm(Ga) as
follows: First, erase in norm(Ga) all edges ev with v ∈ V ′, then erase G0 from
this graph.

– iteration and deiteration
The procedure herein described can be best understood with the example above.
We will carry out the proof the the iteration-rule.
Let G0 := (V0, E0, ν0,>0, Cut0, area0, κ0, ρ0) be a (not necessarily closed) sub-
graph of G which is iterated into the context c ≤ cut(G0).
For i = 1, . . . , n, let v?i ∈ Vna be the vertex with ρna(v) =?i. For each i =
1, . . . , n, we apply the rule ’splitting a vertex’ to v?i. The copy of v?i shall be
denoted with wi and be placed in area(>0). Each occurence of a vertex v ∈ V ?

0

(i.e., ρa(v) =?i, thus ρna(v) = ∗), and v ∈ V0), shall be replaced by wi. In our
example, this yields the second diagram.
Let Gn0 be the subgraph of the derived graph which contains all vertices, edges
and cuts of G0 and additionally all vertices wi and all identity links between
an vertex wi and an vertex v ∈ V ?

0 . This subgraph is iterated into c. During
this iteration, for each i = 1, . . . , n, an identity link is added between wi and its
copy. In our example, this yields the third diagram.
After the iteration, the copies of the vertices wi are merged into wi. In our
example, this yields the fourth diagram.
Finally, the vertices wi are merged back into v?i. The graph we have finally
reached is normGb. In our example, this yields the fifth diagram.

– double cuts
It is easy to see that we can derive norm(Gb) from norm(Ga) with an application
of the double cut rule as well.

– generalization and specialization

If a vertex v ∈ V G of G is generalized, we have norm(Ga)
gen.

`̀n norm(Gb) by
generalizing the vertex G as well.
If a vertex v ∈ V ? of G is generalized, then norm(Gb) is derived from norm(Gb)
by generalizing the vertex G and erasing the vertex ev.

– exchanging referents
Let v1, v2 be two vertices where the referents are exchanged. There are three
cases to distinguish:

If v1, v2 are no query vertices, we have norm(Ga)
exchg.

`̀n norm(Gb) by exchanging
the referents of v1, v2 as well.
If v1 ∈ V ? and v2 /∈ V ?, we sketch the relevant parts of Ga and Gb as follows
(w.l.o.g. we assume ρa(v1) =?1):

P: ?1 Q: g `n P: g Q: ?1

In order to derive norm(Gb) from norm(Ga), we do the following:
We start with norm(Ga):

Q: gP: *

: ?1

We split v?1 as follows (the
new vertex shall be denoted
by w1):

Q: g

:*

P: *

: ?1

Lemma 11.5 from [7] allows
the reflexive, symmetric and
transitive reconfigurations of
identity links in a context. For
our graph, this lemma yields:

Q: g

:*

P: *

: ?1

Now w1 is merged back into
v?1:

Q: gP: *

: ?1

Finally, exchanging referents
yields norm(Gb):

P: g Q: ?1

: ?1

The last case, i.e., if v1, v2 ∈ V ?, can be handled analogously (in fact, it is even
simpler, as no final exchanging of referents is needed).

– splitting a vertex and merging two vertices
We provide a proof for the rule ‘splitting a vertex’.

If in Ga a vertex v /∈ V ?
a is split, we have norm(Ga)

split.

`̀n norm(Gb) as well.
If v ∈ V ?

a (w.l.o.g. we assume ρa(v1) =?1) is split, we sketch the relevant parts
of Ga and Gb as follows:

P: ?1 `n P: ?1 : ?1

In order to derives norm(Gb) from norm(Ga), we do the following:
We start with norm(Ga):

P: ?1

: ?1

The identity-link is doubled
(doubling edges is a rule in
the calculus of Prediger which
can easily be proven in `n):

P: ?1

: ?1

Finally, splitting v?1 yields
norm(Gb):

P: ?1 : ?1

: ?1

– >-erasure and >-insertion
We provide a proof for the rule ‘>-erasure’.

If in Ga a vertex v /∈ V ?
a is erased, we have norm(Ga)

>−era.

`̀n norm(Gb) as well.
If in Ga an isolated vertex v := > : ?i is erased, we can get derive norm(Gb)
from norm(Ga) by merging the corresponding vertex wi := > : ∗ into v?i.

– identity-erasure and identity-insertion
We provide a proof for the rule ‘identity-insertion. The relevant parts of Ga and
Gb can be sketched as follows:

Q: ?1P: ?1 `n P: ?1 Q: ?1

In order to derive norm(Gb) from norm(Ga), we do the following:
We start with norm(Ga):

P: * Q: *

: ?1

We split v?1 as follows (the
new vertex shall be denoted
by w1):

P: ?1 Q: ?1

: ?1

: ?1

Lemma 11.5 from [7] yields:

P: Q:* *

*

: ?1

:

Now w1 is merged back into
v?1:

P: Q:* *

: ?1

As we have investigated all rules of the calculus `n, we are done. 2

With the preceding theorem, it follows immediately that `̀n is complete. This is
the second main result of this paper.

Corollary 1 (Completeness of `̀n for Normed QGwCs).

Let Ga,Gb be two QGwCs with Ga `n Gb . Then we have norm(Ga) `̀n norm(Gb),
where the proof contains only normed QGwCs. Particularly, the calculus `̀n is com-
plete for normed query graphs.

6 Conclusion and Further Research

There are two viewpoints for relation graphs: From an algebraic point of view, oper-
ations on graphs, corresponding to operations on relations, have to be investigated.
This has been done by Burch, Pollandt and Wille. From a logical point of view,
inference rules have to be investigated. This is the purpose of this paper. Of course
these viewpoints are not competing, but complementing. To make the results of this
paper fruitful for the theory of existential graphs and relation graphs, the relation-
ships between existential graphs and concept graphs resp. between relation graphs
and query graphs have to be further elaborated. A first approach for existential
graphs can be found in [6].

Relation graphs can easily be defined inductively. So it seems appropriate to pro-
vide an inductive definition for query graphs as well and to discuss the advantages
and disadvantages of non-inductive and inductive definitions. This is particularly
important for logicians who are much more familiar with inductive definitions and
their use in many proofs, e.g., for formulas.

The system of query graphs can be syntactically extended. A crucial extension is the
addition of so-called nestings, where whole subgraphs of a graph are enclosed in a
vertex. There are different possibilities for interpreting nestings. They are often used
to describe specific contexts, e.g., situations. In [9], nestings are used to describe
nested relations which occur in form of so-called set functions in database systems.
The implementation of nestings has to be further investigated.

References

[1] John Barwise: Heterogenous reasoning. In G. W. Mineau, B. Moulin, J. F. Sowa
(Eds.): Conceptual Graphs for Knowledge Representation. LNAI 699, Springer Ver-
lag, Berlin–New York 2000, 64–74.

[2] R. W. Burch: A Peircean Reduction Thesis: The Foundations of Topological Logic.
Texas Tech University Press, 1991.

[3] M. Chein, M.-L. Mugnier: Conceptual Graphs: Fundamental Notions. Revue d’Intelli-
gence Artificielle 6, 1992, 365–406.

[4] F. Dau: Negations in Simple Concept Graphs. In: B. Ganter, G. W. Mineau (Eds.):
Conceptual Structures: Logical, Linguistic, and Computational Issues. LNAI 1867,
Springer Verlag, Berlin–New York 2000, 263–276.

[5] F. Dau: Concept Graphs and Predicate Logic. In: H. S. Delugach, G. Stumme (Eds.):
Conceptual Structures: Broadening the Base. LNAI 2120, Springer Verlag, Berlin–
New York 2001, 72–86.

[6] F. Dau: An Embedding of Existential Graphs into Concept Graphs with Negations.
In G. Angelova, D. Corbett, U: Priss (Eds.): Conceptual Structures: Integration and
Interfaces. LNAI 2393, Springer Verlag, Berlin–Heidelberg 2002.

[7] F. Dau: The Logic System of Concept Graphs with Negations (And its Relationship
to Predicate Logic). LNAI 2892, Springer Verlag, Berlin–Heidelberg 2003.

[8] F. Dau: Types and Tokens for Logic with Diagrams: A Mathematical Approach. Sub-
mitted to Diagrams (Journal).

[9] F. Dau, J. Hereth Correia: Nested Concept Graphs: Applications for Databases and
Mathematical Foundations. In: Moor, A., Ganter, B. (Eds.): Using Conceptual Struc-
tures. 11th International Conference on Conceptual Structures, ICCS 2003, Dresden,
July 21-July 26, 2003, Contributions to ICCS 2003.
Skaker Verlag, Aachen, 2003.

[10] F. Dau, J. Klinger: From Formal Concept Analysis to Contextual Logic To appear in
the proceedings of the First International Conference on Formal Concept Analysis,
2003,

[11] B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations. Springer,
Berlin–Heidelberg–New York 1999.

[12] E. M. Hammer: Logic and Visual Information. CSLI Publications, Stanford, Califor-
nia, 1995.

[13] E. M. Hammer: Semantics for Existential Graphs. Journal Philosohpical Logic, Vol.
27, 1998, 489–503.

[14] J. Howse, F. Molina, S. Shin, J. Taylor: On Diagram Tokens and Types. In: Proceed-
ings of Diagrams 2002, LNAI 2317, Springer Verlag, Berlin–New York 2002, 146–160.

[15] K. Oehler: Charles Sanders Peirce. Beck’sche Reihe, 1993.
[16] H. Pape: Charles S. Peirce: Phänomen und Logik der Zeichen. German translation of

Peirce’s Syllabus of Certain Topics of Logic.. Suhrkamp Verlag Wissenschaft, 1983.
[17] C. S. Peirce: Reasoning and the Logic of Things. The Cambridge Conferences Lec-

tures of 1898. Cambridge, Massachusetts, London, England, Ed. by K. L. Ketner,
H. Putnam, Harvard Univ. Press, Cambridge 1992.

[18] C. S. Peirce, MS 478. Collected Papers, 4.394-417. Harvard University Press, Cam-
brigde, Massachusetts.

[19] C. S. Peirce, J. F. Sowa: Existential Graphs: MS 514 by Charles Sanders Peirce with
Commentary by John F. Sowa.
http://www.jfsowa.com/peirce/ms514.htm

[20] S. Pollandt: Relational Constructions on Semiconcept Graphs. In: B. Ganter,
G. Mineau (Eds.): Conceptual Structures: Extracting and Representing Semantics.
Contributions to ICCS 2001, Stanford.

[21] S. Pollandt: Relation Graphs: A Structure for Representing Relations in Contextual
Logic of Relations. In G. Angelova, D. Corbett, U: Priss (Eds.): Conceptual Struc-
tures: Integration and Interfaces. LNAI 2393, Springer Verlag, Berlin–Heidelberg
2002.

[22] S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur Restruk-
turierung der mathematischen Logik. Shaker Verlag 1998.

[23] S. Prediger: Simple Concept Graphs: A Logic Approach. In: M, -L. Mugnier, M. Chein
(Eds.): Conceptual Structures: Theory, Tools and Applications. LNAI 1453, Springer
Verlag, Berlin–New York 1998, 225–239.

[24] D. D. Roberts: The Existential Graphs of Charles S. Peirce. Mouton, The Hague,
Paris, 1973.

[25] D. D. Roberts: The Existential Graphs. Computers Math. Appl.., Vol. 23, No. 6–9,
1992, 639–63.

[26] S. Shin: The Logical Status of Diagrams. Cambridge, 1994.
[27] S. Shin: Reconstituting Beta Graphs into an Efficacious System. Journal of Logic,

Language and Information, Vol. 8, No. 3, July 1999.
[28] S. Shin: The Iconic Logic of Peirce’s Graphs. MIT, Bradford, 2002.
[29] J. F. Sowa: Conceptual Structures: Information Processing in Mind and Machine.

Addison Wesley Publishing Company Reading, 1984.
[30] J. F. Sowa: Conceptual Graphs Summary. In: T. E. Nagle, J. A. Nagle, L. L. Gerholz,

P. W. Eklund (Eds.): Conceptual Structures: current research and practice, Ellis
Horwood, 1992, 3–51.

[31] J. F. Sowa: Logic: Graphical and Algebraic. Manuskript, Croton-on-Hudson 1997.
[32] J. F. Sowa: Conceptual Graphs: Draft Proposed American National Standard. In:

W. Tepfenhart, W. Cyre (Eds.): Conceptual Structures: Standards and Practices.
LNAI 1640, Springer Verlag, Berlin–New York 1999, 1–65.
See also [34]

[33] J. F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

[34] J. F. Sowa: Conceptual Graphs: Draft Proposed American National Standard.
Old version: http://www.jfsowa.com/cg/cgdpansw.htm
New version: http://www.jfsowa.com/cg/cgstandw.htm
See also [32]

[35] R. Wille: Plädoyer für eine Philosophische Grundlegung der Begrifflichen Wis-
sensverarbeitung. In: R. Wille, M. Zickwolff (Eds.): Begriffliche Wissensverarbeitung:
Grundfragen und Aufgaben. B.I.–Wissenschaftsverlag, Mannheim, 1994, 11–25.

[36] R. Wille: Restructuring Mathematical Logic: An Approach Based on Peirce’s Prag-
matism. In: A. Ursini, P. Agliano (Eds.): Logic and Algebra. Marcel Dekker, New
York 1996, 267–281.

[37] R. Wille: Conceptual Graphs and Formal Concept Analysis. In: D. Lukose et al.
(Hrsg.): Conceptual Structures: Fulfilling Peirce’s Dream. LNAI 1257, Springer Ver-
lag, Berlin–New York 1997, 290–303. y

[38] R. Wille: Contextual Logic Summary. In: G. Stumme (Ed.): Working with Conceptual
Structures. Contributions to ICCS 2000. Shaker, Aachen 2000, 265–276.

[39] R. Wille: Lecture Notes on Contextual Logic of Relations. FB4-Preprint, TU-
Darmstadt, 2000.

[40] R. Wille: Existential Concept Graphs of Power Context Families. In G. Angelova,
D. Corbett, U: Priss (Eds.): Conceptual Structures: Integration and Interfaces. LNAI
2393, Springer Verlag, Berlin–Heidelberg 2002.

[41] J. Zeman: The Graphical Logic of C. S. Peirce Ph.D. Diss., University of Chicago,
1964. Published 2002 in WWW at:
http://www.clas.ufl.edu/users/jzeman/graphicallogic/

